Deep Neural Network Model Based on Process Mechanism Applied to Predictive Control of Distillation Processes

Wedi'i Gadw mewn:
Manylion Llyfryddiaeth
Cyhoeddwyd yn:Processes vol. 13, no. 3 (2025), p. 811
Prif Awdur: Wang, Zirun
Awduron Eraill: Wang, Hao, Du, Zengzhi
Cyhoeddwyd:
MDPI AG
Pynciau:
Mynediad Ar-lein:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagiau: Ychwanegu Tag
Dim Tagiau, Byddwch y cyntaf i dagio'r cofnod hwn!

MARC

LEADER 00000nab a2200000uu 4500
001 3181727240
003 UK-CbPIL
022 |a 2227-9717 
024 7 |a 10.3390/pr13030811  |2 doi 
035 |a 3181727240 
045 2 |b d20250101  |b d20251231 
084 |a 231553  |2 nlm 
100 1 |a Wang, Zirun  |u Center for Process Simulation & Optimization, Beijing University of Chemical Technology, Beijing 100029, China; <email>2022200161@buct.edu.cn</email> (Z.W.); <email>2023200157@buct.edu.cn</email> (H.W.); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 
245 1 |a Deep Neural Network Model Based on Process Mechanism Applied to Predictive Control of Distillation Processes 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In modern process industries, precise process modeling plays a vital role in intelligent manufacturing. Nevertheless, both mechanistic and data-driven modeling methods have their own limitations. To address the shortcomings of these two modeling methods, we propose a neural network model based on process mechanism knowledge, aiming to enhance the prediction accuracy and interpretability of the model. The basic structure of this neural network consists of gated recurrent units and an attention mechanism. According to the different properties of the variables to be predicted, we propose an improved neural network with a distributed structure and residual connections, which enhances the interpretability of the neural network model. We use the proposed model to conduct dynamic modeling of a benzene–toluene distillation column. The mean squared error of the trained model is 0.0015, and the error is reduced by 77.2% compared with the pure RNN-based model. To verify the prediction ability of the proposed predictive model beyond the known dataset, we apply it to the predictive control of the distillation column. In two tests, it achieves results far superior to those of the PID control. 
653 |a Toluene 
653 |a Accuracy 
653 |a Proportional integral derivative 
653 |a Benzene 
653 |a Optimization techniques 
653 |a Artificial neural networks 
653 |a Predictive control 
653 |a Data processing 
653 |a Dynamic models 
653 |a Prediction models 
653 |a Intelligent manufacturing systems 
653 |a Catalytic cracking 
653 |a Efficiency 
653 |a Machine learning 
653 |a Simulation 
653 |a Production controls 
653 |a Product quality 
653 |a Control algorithms 
653 |a Artificial intelligence 
653 |a Digital twins 
653 |a Neural networks 
653 |a Process controls 
653 |a Variables 
653 |a Distillation 
653 |a Methods 
653 |a Chemical engineering 
700 1 |a Wang, Hao  |u Center for Process Simulation & Optimization, Beijing University of Chemical Technology, Beijing 100029, China; <email>2022200161@buct.edu.cn</email> (Z.W.); <email>2023200157@buct.edu.cn</email> (H.W.); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 
700 1 |a Du, Zengzhi  |u Center for Process Simulation & Optimization, Beijing University of Chemical Technology, Beijing 100029, China; <email>2022200161@buct.edu.cn</email> (Z.W.); <email>2023200157@buct.edu.cn</email> (H.W.); College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China 
773 0 |t Processes  |g vol. 13, no. 3 (2025), p. 811 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3181727240/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3181727240/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3181727240/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch