The Computational Efficiency in Mathematical Algorithms

Guardado en:
Detalles Bibliográficos
Publicado en:International Journal of Combinatorial Optimization Problems and Informatics vol. 16, no. 2 (2025), p. 191
Autor principal: Eric León Olivares
Otros Autores: Márquez Strociak, Luis Carlos, Mayra Lorena González Mosqueda, Karla Martínez Tapia, Salvador Martínez Pagola, Eric Simancas Acevedo
Publicado:
International Journal of Combinatorial Optimization Problems & Informatics
Materias:
Acceso en línea:Citation/Abstract
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!
Descripción
Resumen:The implementation of mathematical algorithms plays a fundamental role in computational efficiency. Sequential programming, which processes instructions in a linear manner, often struggles with large data volumes due to its inherent limitations. In contrast, parallel programming distributes tasks across multiple cores, significantly reducing processing times and improving overall performance. This paper presents a comparative analysis of both approaches and their relevance in Systems Engineering, where computational optimization is critical. To this end, we implement and evaluate the Sobel algorithm—commonly used for edge detection in images—in both sequential and parallel modes. The implementation is carried out in Python, leveraging the NumPy, OpenCV, and Multiprocessing libraries. This study analyzes the conditions under which parallelization enhances performance and identifies scenarios where process overhead may negate its benefits, thus establishing fundamental criteria for applying these techniques to solve mathematical problems in engineering. The source code is available on GitHub at: [GitHub Repository].
ISSN:2007-1558
DOI:10.61467/2007.1558.2025.v16i2.1081
Fuente:Advanced Technologies & Aerospace Database