Dynamic sink movement strategy for expedited query processing in Internet of things-based sensor networks

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Journal of Engineering and Applied Science vol. 72, no. 1 (Dec 2025), p. 43
Έκδοση:
Springer Nature B.V.
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3182932671
003 UK-CbPIL
022 |a 1110-1903 
022 |a 1110-1393 
024 7 |a 10.1186/s44147-025-00611-1  |2 doi 
035 |a 3182932671 
045 2 |b d20251201  |b d20251231 
245 1 |a Dynamic sink movement strategy for expedited query processing in Internet of things-based sensor networks 
260 |b Springer Nature B.V.  |c Dec 2025 
513 |a Journal Article 
520 3 |a Wireless sensor networks (WSNs) represent an essential infrastructure that supports the Internet of things (IoT) and enables intelligent data collection from various contexts. In IoT-driven systems, sensor nodes collect real-time data, initiate end-user or application requests, and forward the gathered data to a cloud server. Query processing in WSN aims to obtain accurate sensor data while conserving network resources. However, traditional static sink-based data collection and query processing methods often face challenges related to network lifetime and lengthy delays. To mitigate these drawbacks, this paper proposes a novel dynamic sink-based query processing strategy (DSQPS) for IoT-enabled WSNs. DSQPS first calculates the optimum number of rendezvous points on the network by solving a minimal set covering problem, followed by Aquila Optimizer (AO), which optimizes the number of mobile sinks. In addition, an optimized movement path for mobile sinks is determined, minimizing delays in data collection and query processing. DSQPS demonstrates superior performance over state-of-the-art approaches based on rigorous testing and mathematical analysis. Results indicate that DSQPS outperforms comparative methods regarding query processing delay, average energy consumption, network lifespan, and throughput, up to 38%, 30%, 150, and 60%, respectively. 
653 |a Internet of Things 
653 |a Mathematical analysis 
653 |a Queries 
653 |a Communication 
653 |a Cloud computing 
653 |a Sensors 
653 |a Wireless sensor networks 
653 |a Military deployment 
653 |a Radio frequency identification 
653 |a Energy efficiency 
653 |a Smart houses 
653 |a Surveillance 
653 |a Real time 
653 |a Energy consumption 
653 |a Data transmission 
653 |a Query processing 
653 |a Data collection 
773 0 |t Journal of Engineering and Applied Science  |g vol. 72, no. 1 (Dec 2025), p. 43 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3182932671/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3182932671/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3182932671/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch