Pan-PTM profiling identifies post-translational modifications associated with exceptional longevity and preservation of skeletal muscle function in Drosophila

Tallennettuna:
Bibliografiset tiedot
Julkaisussa:NPJ Aging vol. 11, no. 1 (2025), p. 23
Julkaistu:
Nature Publishing Group
Aiheet:
Linkit:Citation/Abstract
Full Text - PDF
Tagit: Lisää tagi
Ei tageja, Lisää ensimmäinen tagi!

MARC

LEADER 00000nab a2200000uu 4500
001 3183343228
003 UK-CbPIL
022 |a 2056-3973 
024 7 |a 10.1038/s41514-025-00215-2  |2 doi 
035 |a 3183343228 
045 2 |b d20250101  |b d20251231 
084 |a 274863  |2 nlm 
245 1 |a Pan-PTM profiling identifies post-translational modifications associated with exceptional longevity and preservation of skeletal muscle function in <i>Drosophila</i> 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a Skeletal muscle weakness is a major component of age-associated frailty, but the underlying mechanisms are not completely understood. Drosophila has emerged as a useful model for studying skeletal muscle aging. In this organism, previous lab-based selection established strains with increased longevity and reduced age-associated muscle functional decline compared to a parental strain. Here, we have applied a computational pipeline (JUMPptm) for retrieving information on 8 post-translational modifications (PTMs) from the skeletal muscle proteomes of 2 long-lived strains and the corresponding parental strain in young and old age. This pan-PTM analysis identified 2470 modified sites (acetylation, carboxylation, deamidation, dihydroxylation, mono-methylation, oxidation, phosphorylation, and ubiquitination) in several classes of proteins, including evolutionarily conserved muscle contractile proteins and metabolic enzymes. PTM consensus sequences further highlight the amino acids that are enriched adjacent to the modified site, thus providing insight into the flanking residues that influence distinct PTMs. Altogether, these analyses identify PTMs associated with muscle functional decline during aging and that may underlie the longevity and negligible functional senescence of lab-evolved Drosophila strains. 
653 |a Translation 
653 |a Phosphorylation 
653 |a Musculoskeletal system 
653 |a Skeletal muscle 
653 |a Longevity 
653 |a Post-translation 
653 |a Ubiquitination 
653 |a Acetylation 
653 |a Insects 
653 |a Carboxylation 
653 |a Muscle contraction 
653 |a Proteomes 
653 |a Methylation 
653 |a Strains (organisms) 
653 |a Senescence 
653 |a Aging 
653 |a Drosophila 
773 0 |t NPJ Aging  |g vol. 11, no. 1 (2025), p. 23 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3183343228/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3183343228/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch