Generative AI for Data Science 101: Coding Without Learning to Code

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Journal of Statistics and Data Science Education vol. 33, no. 2 (2025), p. 129
1. Verfasser: Bien, Jacob
Weitere Verfasser: Mukherjee, Gourab
Veröffentlicht:
Taylor & Francis Ltd.
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3184854149
003 UK-CbPIL
022 |a 2693-9169 
022 |a 1069-1898 
024 7 |a 10.1080/26939169.2024.2432397  |2 doi 
035 |a 3184854149 
045 2 |b d20250101  |b d20251231 
100 1 |a Bien, Jacob  |u Data Sciences and Operations, Marshall School of Business, University of Southern California, Los Angeles, CA 
245 1 |a Generative AI for Data Science 101: Coding Without Learning to Code 
260 |b Taylor & Francis Ltd.  |c 2025 
513 |a Journal Article 
520 3 |a Should one teach coding in a required introductory statistics and data science class for non-major students? Many professors advise against it, considering it a distraction from the important and challenging statistical topics that need to be covered. By contrast, other professors argue that the ability to interact flexibly with data will inspire students with a lasting love of the subject and a continued commitment to the material beyond the introductory course. With the release of large language models that write code, we saw an opportunity for a middle ground, which we tried in Fall 2023 in a required introductory data science course in our school’s full-time MBA program. We taught students how to write English prompts to the artificial intelligence tool GitHub Copilot that could be turned into R code and executed. In this short article, we report on our experience using this new approach. 
653 |a Teaching 
653 |a Language 
653 |a Software 
653 |a Students 
653 |a Regression analysis 
653 |a Syntax 
653 |a Science education 
653 |a Generalized linear models 
653 |a Data science 
653 |a Large language models 
653 |a Generative artificial intelligence 
653 |a Learning 
653 |a Chatbots 
653 |a MBA programs & graduates 
653 |a Housing 
653 |a Nonmajors 
653 |a Statistics Education 
653 |a Coding 
653 |a Teaching Models 
653 |a Artificial Intelligence 
653 |a Science Instruction 
653 |a Statistical Data 
653 |a Science Curriculum 
653 |a Computer Software 
653 |a Introductory Courses 
653 |a Regression (Statistics) 
700 1 |a Mukherjee, Gourab  |u Data Sciences and Operations, Marshall School of Business, University of Southern California, Los Angeles, CA 
773 0 |t Journal of Statistics and Data Science Education  |g vol. 33, no. 2 (2025), p. 129 
786 0 |d ProQuest  |t Research Library 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3184854149/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3184854149/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch