AI-driven orchard management: Advancing sustainable apple production through convolutional neural network recognition

Guardat en:
Dades bibliogràfiques
Publicat a:E3S Web of Conferences vol. 614 (2025)
Autor principal: Karabanov, Georgy
Altres autors: Oke, Olouafemi Ricardo, Krakhmalev, Alexey
Publicat:
EDP Sciences
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3185094191
003 UK-CbPIL
022 |a 2555-0403 
022 |a 2267-1242 
024 7 |a 10.1051/e3sconf/202561403018  |2 doi 
035 |a 3185094191 
045 2 |b d20250101  |b d20251231 
084 |a 268330  |2 nlm 
100 1 |a Karabanov, Georgy 
245 1 |a AI-driven orchard management: Advancing sustainable apple production through convolutional neural network recognition 
260 |b EDP Sciences  |c 2025 
513 |a Conference Proceedings 
520 3 |a The aim of this study is to develop a convolutional neural network architecture designed for apple recognition in images. The relevance of this task is tied to the need for fruit recognition to automate the process of apple crop harvesting. To reduce computations, it is proposed to convert the image captured by the camera from RGB format to HSV format. Using the example of a red apple, the creation of a bitmask is demonstrated, which allows for the identification of regions of the desired color within the image. A structure and parameters of the convolutional neural network were proposed, along with a method for computing the distance between the detected object and the camera based on the pre-calculation of the focal length. To analyze the results of the neural network under consideration, software was developed in Python using the TensorFlow and Keras libraries. The training and testing of the neural network were conducted on a PC Aspire A315-23 with an AMD Athlon Silver 3050U 1.2 GHz processor, 4 GB DDR4 RAM, and an AMD Radeon Graphics 2.30 GHz graphics card, running Windows 11 Pro operating system. The neural network was trained for 15 epochs, taking 217 seconds in total. Object recognition by the trained neural network took around 1 second. The proposed convolutional neural network model demonstrated a recognition accuracy of 86% on the test image set. 
653 |a Harvesting 
653 |a Operating systems 
653 |a Apples 
653 |a Graphics processing units 
653 |a Microprocessors 
653 |a Pattern recognition 
653 |a Artificial neural networks 
653 |a Windows (computer programs) 
653 |a Neural networks 
653 |a Cameras 
653 |a Format 
653 |a Image processing 
653 |a Python 
653 |a Images 
653 |a Object recognition 
653 |a Fruits 
653 |a Environmental 
700 1 |a Oke, Olouafemi Ricardo 
700 1 |a Krakhmalev, Alexey 
773 0 |t E3S Web of Conferences  |g vol. 614 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3185094191/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3185094191/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch