Designing a Sustainable Model for Providing Health Services Based on the Internet of Things and Meta-Heuristic Algorithms

Guardat en:
Dades bibliogràfiques
Publicat a:International Journal of Supply and Operations Management vol. 12, no. 1 (Feb 2025), p. 28
Autor principal: Eshlaghy, Abbas Toloie
Altres autors: Daneshvar, Amir, Peivandizadeh, Ali, S Senathirajah, Abdul Rahman, Ibrahim, Irwan
Publicat:
Kharazmi University
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3185287270
003 UK-CbPIL
022 |a 2383-1359 
022 |a 2383-2525 
024 7 |a 10.22034/ijsom.2023.110025.2827  |2 doi 
035 |a 3185287270 
045 2 |b d20250201  |b d20250228 
100 1 |a Eshlaghy, Abbas Toloie  |u Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran b Graduated Student, University of Houston, Texas, USA 
245 1 |a Designing a Sustainable Model for Providing Health Services Based on the Internet of Things and Meta-Heuristic Algorithms 
260 |b Kharazmi University  |c Feb 2025 
513 |a Journal Article 
520 3 |a In this article, a health service delivery model based on the Internet of Things (IoT) under uncertainty is presented. The considered model includes a set of patients, doctors, vehicles, and services that should be provided in the shortest time and cost. The most important decisions of the network include the allocation of specialist doctors to patients, the routing of vehicles, and doctors to provide health services. The dataset of the problem has been provided to the hospital and centers using IoT tools and an integration framework has been designed for this problem. The results of solving the numerical examples show that to reduce the service delivery time and the distance traveled by vehicles, the design costs of the model should be increased. Also, the increase in the rate of uncertainty during service delivery leads to an increase in total costs in the health system. In this article, Non-Dominated Sorting Genetic Algorithm II (NSGA-II), Multi-Objective Particle Swarm Optimization (MOPSO), and Multi-objective imperialist Competitive algorithm (MOICA) were proposed to solve the model, and the results showed that the proposed methods are more efficient than the exact methods. These algorithms have achieved close to optimal results in the shortest possible time. Also, the calculation results in large numerical examples show the high efficiency of the MOICA. 
653 |a Health care 
653 |a Algorithms 
653 |a Particle swarm optimization 
653 |a Internet of Things 
653 |a Genetic algorithms 
653 |a Patients 
653 |a Vehicles 
653 |a Uncertainty 
653 |a Multiple objective analysis 
653 |a Health services 
653 |a Sorting algorithms 
653 |a Evolutionary algorithms 
653 |a Heuristic methods 
653 |a Physicians 
700 1 |a Daneshvar, Amir  |u Department of Industrial Management, Science and Research Branch, Islamic Azad University, Tehran, Iran 
700 1 |a Peivandizadeh, Ali  |u Graduated Student, University of Houston, Texas, USA 
700 1 |a S Senathirajah, Abdul Rahman  |u Lecturer, Department of Business and Communications, Faculty of Business and Communications, INTI International University, Malaysia 
700 1 |a Ibrahim, Irwan  |u Lecturer, Malaysia Institute of Transportation (MITRANS), Faculty of Business and Management, Department of Operations Management, University Teknologi MARA, Cawangan Selangor, Kampus Puncak Alam, MALAYSIA 
773 0 |t International Journal of Supply and Operations Management  |g vol. 12, no. 1 (Feb 2025), p. 28 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3185287270/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3185287270/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch