Enhanced Model for Mango Detection and Quality Classification Using Optimized Feature Extraction Techniques

Salvato in:
Dettagli Bibliografici
Pubblicato in:The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings (2025)
Autore principale: Adla Aryan
Altri autori: Abdul Aleem Mohammed, Chabra, Manish, Rasheed, Syed Saarib, Mohammed, Adnan, Mohammed Abdul Raoof
Pubblicazione:
The Institute of Electrical and Electronics Engineers, Inc. (IEEE)
Soggetti:
Accesso online:Citation/Abstract
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3185351642
003 UK-CbPIL
024 7 |a 10.1109/SCEECS64059.2025.10941017  |2 doi 
035 |a 3185351642 
045 2 |b d20250101  |b d20251231 
084 |a 228229  |2 nlm 
100 1 |a Adla Aryan  |u Vardhaman College of Engineering,Department of Artificial Intelligence & Machine Learning,Hyderabad,Telangana,India,501218 
245 1 |a Enhanced Model for Mango Detection and Quality Classification Using Optimized Feature Extraction Techniques 
260 |b The Institute of Electrical and Electronics Engineers, Inc. (IEEE)  |c 2025 
513 |a Conference Proceedings 
520 3 |a Conference Title: 2025 IEEE International Students' Conference on Electrical, Electronics and Computer Science (SCEECS)Conference Start Date: 2025, Jan. 18 Conference End Date: 2025, Jan. 19 Conference Location: Bhopal, IndiaThis paper introduces an automated grading system for mangoes, enhancing efficiency and accuracy compared to human-based methods. The system uses the Lion Assisted Firefly Algorithm (LA-FF) to extract the best features from multiple highlights, enhancing grading efficiency and accuracy. The LA-FF algorithm is then used to fine-tune the convolutional layers of a deep CNN based on the specific requirements of mango grading. The system integrates the latest algorithms, automation, and adaptation to create an even more effective and precise grading system suitable for rural agricultural contexts. The LA-FF algorithm is used to extract the best features from multiple highlights, resulting in a more accurate and efficient grading process. 
653 |a Feature extraction 
653 |a Algorithms 
653 |a Heuristic methods 
653 |a Mangoes 
653 |a Economic 
700 1 |a Abdul Aleem Mohammed  |u Muffakham Jah College of Engineering and Technology,Department of Computer Science and Engineering,Hyderabad,India,500034 
700 1 |a Chabra, Manish  |u Vardhaman College of Engineering,Department of Artificial Intelligence & Machine Learning,Hyderabad,Telangana,India,501218 
700 1 |a Rasheed, Syed Saarib  |u Methodist College of Engineering and Technology,Department of Artificial Intelligence & Data Science,Hyderabad,Telangana,India,500001 
700 1 |a Mohammed, Adnan  |u Methodist College of Engineering and Technology,Department of Artificial Intelligence & Data Science,Hyderabad,Telangana,India,500001 
700 1 |a Mohammed Abdul Raoof  |u Muffakham Jah College of Engineering and Technology,Department of Computer Science and Engineering,Hyderabad,India,500034 
773 0 |t The Institute of Electrical and Electronics Engineers, Inc. (IEEE) Conference Proceedings  |g (2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3185351642/abstract/embedded/ZKJTFFSVAI7CB62C?source=fedsrch