CNN-based Online Access Control Recognition Method Using IoT and Microcontroller

Kaydedildi:
Detaylı Bibliyografya
Yayımlandı:Informatica vol. 49, no. 6 (Jan 2025), p. 27
Yazar: Su, Yan
Diğer Yazarlar: Wu, Yin
Baskı/Yayın Bilgisi:
Slovenian Society Informatika / Slovensko drustvo Informatika
Konular:
Online Erişim:Citation/Abstract
Full Text
Full Text - PDF
Etiketler: Etiketle
Etiket eklenmemiş, İlk siz ekleyin!

MARC

LEADER 00000nab a2200000uu 4500
001 3186010349
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49i6.6937  |2 doi 
035 |a 3186010349 
045 2 |b d20250101  |b d20250131 
084 |a 179436  |2 nlm 
100 1 |a Su, Yan  |u College of Information Engineering, Zhengzhou University of Technology, Zhengzhou, 451191, China 
245 1 |a CNN-based Online Access Control Recognition Method Using IoT and Microcontroller 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Jan 2025 
513 |a Journal Article 
520 3 |a In order to improve the security and practicality of the access control system, an online recognition access control system based on the Internet of Things and microcontroller is designed. Taking STM32FI03RCT6 microcontroller as the core control center, RFID technology is used for personnel information recognition, and convolutional neural networks are introduced for facial image processing. Meanwhile, Raspberry Pi 3B+ is used as an auxiliary controller to achieve liveness detection. The experiment was conducted under the Windows 10 operating system using Intel (r) Core TM i5-10400F processor and 8GB memory are used for face detection under different lighting conditions to evaluate the robustness of the system. The results showed that the proposed method detected the target for the first time with an average frame rate of 194, which had stronger performance compared with support vector machines and convolutional neural networks. In addition, the accuracy of the system was 98.3%, and the final loss value was 0.012%. The research shows that this online identification access control system can effectively meet the needs of modern households and businesses for fast and accurate identity verification, demonstrating good practical prospects. 
653 |a Microcontrollers 
653 |a Operating systems 
653 |a Face recognition 
653 |a Accuracy 
653 |a Internet of Things 
653 |a Brain cancer 
653 |a Communication 
653 |a Microprocessors 
653 |a Artificial neural networks 
653 |a Windows (computer programs) 
653 |a Radio frequency identification 
653 |a Data processing 
653 |a Control systems 
653 |a Image processing 
653 |a Access control 
653 |a Efficiency 
653 |a Authentication protocols 
653 |a Support vector machines 
653 |a Households 
653 |a Neural networks 
653 |a Control centres 
653 |a Classification 
653 |a Target detection 
653 |a Design 
653 |a Methods 
653 |a Algorithms 
653 |a Image processing systems 
700 1 |a Wu, Yin  |u College of Information Engineering, Zhengzhou University of Technology, Zhengzhou, 451191, China 
773 0 |t Informatica  |g vol. 49, no. 6 (Jan 2025), p. 27 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3186010349/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3186010349/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3186010349/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch