Development of an automated CBCT‐based simulation‐free platform for expedited palliative radiotherapy on a conventional linear accelerator

Gorde:
Xehetasun bibliografikoak
Argitaratua izan da:Journal of Applied Clinical Medical Physics vol. 26, no. 4 (Apr 1, 2025)
Egile nagusia: Tegtmeier, Riley C.
Beste egile batzuk: Clouser, Edward L., Chen, Quan, Buckey, Courtney R., Chungbin, Suzanne J., Kutyreff, Christopher J., Aguilar, Jose S., Labbe, Amber L., Horning, Brooke L., Rule, William G., Vora, Sujay A., Rong, Yi
Argitaratua:
John Wiley & Sons, Inc.
Gaiak:
Sarrera elektronikoa:Citation/Abstract
Full Text
Full Text - PDF
Etiketak: Etiketa erantsi
Etiketarik gabe, Izan zaitez lehena erregistro honi etiketa jartzen!

MARC

LEADER 00000nab a2200000uu 4500
001 3186181040
003 UK-CbPIL
022 |a 1526-9914 
024 7 |a 10.1002/acm2.14612  |2 doi 
035 |a 3186181040 
045 0 |b d20250401 
100 1 |a Tegtmeier, Riley C.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
245 1 |a Development of an automated CBCT‐based simulation‐free platform for expedited palliative radiotherapy on a conventional linear accelerator 
260 |b John Wiley & Sons, Inc.  |c Apr 1, 2025 
513 |a Journal Article 
520 3 |a Background Conventional approaches for emergent or expedited palliative radiotherapy (RT) involve the application of cumbersome vendor‐provided solutions and/or multiple patient appointments to complete the RT workflow within a compressed timeframe. Purpose This report delineates the clinical development of an in‐house, semi‐automated Cone‐beam computed tomography (CBCT)‐based simulation‐free platform for expedited palliative RT on conventional linacs, intended to supplant existing techniques employed at this institution. Methods The internal software, termed SimFree Wizard (SFW), was engineered utilizing a C#‐based application programming interface integrated within the treatment planning system (TPS). Generated scripts were compiled as stand‐alone executables, with a graphical user interface (GUI) customized via an integrated development environment. The platform was conceived as a framework for accelerated CBCT‐based RT, bypassing the requirement for standard simulation imaging. SFW employs full automation where feasible to minimize user intervention, supplemented by graphical instructions for tasks requiring manual execution. During development, relevant temporal metrics from 10 end‐to‐end tests for palliative spine RT were quantified. User feedback was solicited via a simple questionnaire assessing the overall platform usability. Automated in‐house secondary verification software was developed for validation of the TPS‐calculated monitor units (MUs). Results The mean duration for workflow execution was 41:42 ± 3:18 [mm:ss] (range ∼37–46 min). SFW satisfactorily generated simple, multi‐field CBCT‐based 3D treatment plans within seconds following delineation of the desired treatment area. User feedback indicated enhanced usability compared to previously employed solutions. Validation of the secondary verification software demonstrated accurate results for palliative spine RT and other simple cases wherein the dose calculation point resides in a predominantly homogenous medium. Conclusion A novel in‐house solution for expedited CBCT‐based RT was successfully developed, facilitating completion of the entire workflow within approximately 1‐hour or less for simple palliative/emergent scenarios. Overall, this application is expected to improve the quality and safety of palliative RT while greatly reducing workflow duration, thereby improving access to palliative care. 
610 4 |a Varian Medical Systems Inc Microsoft Corp 
653 |a User interface 
653 |a Simulation 
653 |a Software 
653 |a Programming languages 
653 |a Patient safety 
653 |a Application programming interface 
653 |a Metastasis 
653 |a Planning 
653 |a Palliative care 
653 |a Automation 
653 |a Queries 
653 |a Structured Query Language-SQL 
653 |a Spinal cord 
653 |a Radiation therapy 
700 1 |a Clouser, Edward L.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Chen, Quan  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Buckey, Courtney R.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Chungbin, Suzanne J.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Kutyreff, Christopher J.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Aguilar, Jose S.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Labbe, Amber L.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Horning, Brooke L.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Rule, William G.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Vora, Sujay A.  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
700 1 |a Rong, Yi  |u Department of Radiation Oncology, Mayo Clinic Arizona, Phoenix, Arizona, USA 
773 0 |t Journal of Applied Clinical Medical Physics  |g vol. 26, no. 4 (Apr 1, 2025) 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3186181040/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3186181040/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3186181040/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch