Enhancing Latent Defect Detection in Built-In Spindle Assembly Lines Through Vibration Data Analysis

Enregistré dans:
Détails bibliographiques
Publié dans:Shock and Vibration vol. 2025 (2025)
Auteur principal: Kuo-Hao, Li
Autres auteurs: Wang, Chao-Nan, Yao-Chi, Tang
Publié:
John Wiley & Sons, Inc.
Sujets:
Accès en ligne:Citation/Abstract
Full Text
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3186838388
003 UK-CbPIL
022 |a 1070-9622 
022 |a 1875-9203 
024 7 |a 10.1155/vib/7434412  |2 doi 
035 |a 3186838388 
045 2 |b d20250101  |b d20251231 
084 |a 259328  |2 nlm 
100 1 |a Kuo-Hao, Li  |u Department of Engineering Science and Ocean Engineering National Taiwan University Taipei 106319 Taiwan 
245 1 |a Enhancing Latent Defect Detection in Built-In Spindle Assembly Lines Through Vibration Data Analysis 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a This study proposed a novel machine learning–driven methodology for detecting potential defects in computer numerical control (CNC) spindle manufacturing. The methodology, which analyzes 13 real-world built-in spindles, employs t-distributed stochastic neighbor embedding (t-SNE) for data visualization and enhances k-means++ clustering with the Davies–Bouldin Index (DBI) for the automatic selection of the optimal number of clusters, significantly surpassing traditional inspection methods in identifying subtle yet critical defects. This study utilized the fast Fourier transform (FFT) for precise feature extraction. The integration of these advanced algorithms accurately identified defects and categorized them, thus optimizing manufacturing processes. The inclusion of the DBI in the k-means++ clustering algorithm facilitated an objective evaluation of cluster quality, ensuring that the selected number of clusters accurately represents the underlying data patterns. This automated selection of the optimal k value enhanced the stability and reliability of the defect detection process. The proposed methodology substantially reduced the yield of defective spindles by identifying and addressing defects before spindle installation in CNC machines. The proactive defect detection and intervention system rectified potential failures at an early stage and improved the overall quality control processes. This proactive approach enhanced operational efficiency and reliability, reduced rework and warranty claims costs, and aligned with industrial needs while addressing a critical gap in academic research. This study significantly contributes to spindle manufacturing, ensuring high-quality production outcomes and bridging important gaps in both industrial application and academic research. 
653 |a Accuracy 
653 |a Scientific visualization 
653 |a Datasets 
653 |a Spindles 
653 |a Quality control 
653 |a Wavelet transforms 
653 |a Defects 
653 |a Numerical controls 
653 |a Customer feedback 
653 |a Optimization techniques 
653 |a Fast Fourier transformations 
653 |a Signal processing 
653 |a Interdisciplinary aspects 
653 |a Manufacturing 
653 |a Clustering 
653 |a Machine learning 
653 |a Visualization 
653 |a Efficiency 
653 |a Assembly lines 
653 |a Product reliability 
653 |a Data analysis 
653 |a Methodology 
653 |a Artificial intelligence 
653 |a Fourier transforms 
653 |a Automation 
653 |a Reliability 
653 |a Optimization 
653 |a Industrial applications 
653 |a Algorithms 
653 |a Vibration analysis 
653 |a Methods 
700 1 |a Wang, Chao-Nan  |u Department of Engineering Science and Ocean Engineering National Taiwan University Taipei 106319 Taiwan 
700 1 |a Yao-Chi, Tang  |u Department of Systems Engineering and Naval Architecture National Taiwan Ocean University Keelung 20224 Taiwan 
773 0 |t Shock and Vibration  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3186838388/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3186838388/fulltext/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3186838388/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch