FPGA-based accelerator for adaptive banded event alignment in nanopore sequencing data analysis

Salvato in:
Dettagli Bibliografici
Pubblicato in:BMC Bioinformatics vol. 26 (2025), p. 1
Autore principale: Feng, Yilin
Altri autori: Li, Zheyu, Akbulut, Gulsum Gudukbay, Narayanan, Vijaykrishnan, Kandemir, Mahmut Taylan, Das, Chita R
Pubblicazione:
Springer Nature B.V.
Soggetti:
Accesso online:Citation/Abstract
Full Text
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3187545106
003 UK-CbPIL
022 |a 1471-2105 
024 7 |a 10.1186/s12859-024-06011-1  |2 doi 
035 |a 3187545106 
045 2 |b d20250101  |b d20251231 
084 |a 58459  |2 nlm 
100 1 |a Feng, Yilin 
245 1 |a FPGA-based accelerator for adaptive banded event alignment in nanopore sequencing data analysis 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a BackgroundAdaptive Banded Event Alignment (ABEA) stands as a critical algorithmic component in sequence polishing and DNA methylation detection, employing dynamic programming to align raw Nanopore signal with reference reads. Motivated by the observation that, compared to CPUs and GPUs, cutting-edge FPGAs demonstrate—in certain cases—superior performance at a reduced cost and energy consumption, this paper presents an efficient FPGA-based accelerator for ABEA, leveraging the inherent high parallelism and sequential access pattern within ABEA.ResultOur proposed FPGA-based ABEA accelerator significantly enhances ABEA performance compared to the original CPU-based implementation in Nanopolish as well as the state-of-art acceleration on GPU and FPGA platforms. Specifically, targeting Xilinx VU9P, our accelerator achieves an average throughput speedup of 10.05\(\times\) over the CPU-only implementation, an average 1.81\(\times\) speedup over the state-of-art GPU acceleration with only 7.2% of the energy, and a speedup of 10.11\(\times\) compared to an existing FPGA accelerator.ConclusionOur work demonstrates that intensive genome analysis can benefit significantly from cutting-edge FPGAs, offering improvements in both performance and energy consumption. 
653 |a DNA methylation 
653 |a Energy consumption 
653 |a Data analysis 
653 |a Central processing units--CPUs 
653 |a Dynamic programming 
653 |a Accuracy 
653 |a Alignment 
653 |a Deep learning 
653 |a Graphics processing units 
653 |a Bandwidths 
653 |a Genomic analysis 
653 |a Genomes 
653 |a Algorithms 
653 |a Field programmable gate arrays 
653 |a Nucleotide sequence 
653 |a Economic 
653 |a Environmental 
700 1 |a Li, Zheyu 
700 1 |a Akbulut, Gulsum Gudukbay 
700 1 |a Narayanan, Vijaykrishnan 
700 1 |a Kandemir, Mahmut Taylan 
700 1 |a Das, Chita R 
773 0 |t BMC Bioinformatics  |g vol. 26 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3187545106/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3187545106/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3187545106/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch