Rosmarinic Acid inhibits Pseudorabies Virus (PRV) infection by activating the cGAS-STING signaling pathway

সংরক্ষণ করুন:
গ্রন্থ-পঞ্জীর বিবরন
প্রকাশিত:BMC Microbiology vol. 25 (2025), p. 1
প্রধান লেখক: Hu, Tingting
অন্যান্য লেখক: Gao, Sihui, Yu, Zhijie, Liu, Yunhao, Tang, Huaqiao, Xu, Zhiwen, Zhu, Ling, Zhao, Ling, Ye, Gang, Shi, Fei
প্রকাশিত:
Springer Nature B.V.
বিষয়গুলি:
অনলাইন ব্যবহার করুন:Citation/Abstract
Full Text
Full Text - PDF
ট্যাগগুলো: ট্যাগ যুক্ত করুন
কোনো ট্যাগ নেই, প্রথমজন হিসাবে ট্যাগ করুন!

MARC

LEADER 00000nab a2200000uu 4500
001 3187554928
003 UK-CbPIL
022 |a 1471-2180 
024 7 |a 10.1186/s12866-024-03732-4  |2 doi 
035 |a 3187554928 
045 2 |b d20250101  |b d20251231 
084 |a 58455  |2 nlm 
100 1 |a Hu, Tingting 
245 1 |a Rosmarinic Acid inhibits Pseudorabies Virus (PRV) infection by activating the cGAS-STING signaling pathway 
260 |b Springer Nature B.V.  |c 2025 
513 |a Journal Article 
520 3 |a Pseudorabies virus (PRV), a swine alphaherpesvirus, is a double-stranded DNA virus. It may infect various animals, especially pigs. PRV infection in pigs leads to high mortality rates, and causes huge economic lose for swine industry. Currently, there are few effective antiviral treatments available. Rosmarinic acid (RA), a hydrophilic phenolic compound, shows potential for inhibiting herpes simplex virus. Given that PRV is a member of the Herpesviridae family, this study investigated the antiviral effects of RA against PRV infection through both in vitro and in vivo, as well as the underlying molecular mechanisms. PK-15 cells were used to assess the cytotoxicity of RA in vitro, followed by an investigation of its anti-PRV activity. The study then explored how RA regulates the cGAS-STING signaling pathway, along with inflammatory and apoptotic factors in PRV-infected cells. Molecular docking and dynamics simulations further elucidated the binding interactions between RA and cGAS-STING, providing insight into how RA activates the cGAS-STING pathway against PRV infection. In vivo, the antiviral efficacy of RA was evaluated in a PRV-infected mouse model by assessing tissue viral genome copies, the innate immune cGAS-STING signaling pathway activation, and inflammatory and apoptotic responses. The results showed that RA exhibited a half-maximal cytotoxic concentration (CC50) of 26.23 µg/mL on PK-15 cells and a half-maximal inhibitory concentration (IC50) of 0.84 µg/mL against PRV, resulting in a selectivity index (SI) of 31.22. These findings suggest that RA is a highly effective and low-toxicity compound. RA significantly inhibited PRV adsorption, penetration, and replication within cells. Additionally, while PRV infection suppresses the cGAS-STING signaling pathway, RA treatment activates the innate immune response, enhances downstream antiviral effector IFN-β expression, and reduces inflammation and apoptosis in PRV-infected cells. Molecular docking results showed that the docking scores of cGAS_RA and STING_RA complexes were both less than − 5 kcal/mol, suggesting that RA binds well to cGAS and STING proteins. Molecular dynamics simulations, including RMSD, RMSF, and MM-GBSA analyses, confirmed the high binding stability of cGAS with RA, further validating the potential activity of RA as a cGAS agonist. In vivo studies revealed that RA dramatically lowered viral genome copies in various organs, activated the cGAS-STING signaling pathway, inhibited PRV-induced inflammation and apoptosis, alleviated clinical symptoms, and decreased mortality rate in PRV-infected mice. Overall, RA significantly inhibited PRV proliferation in vitro and in vivo, effectively reduced inflammation and apoptosis, and decreased the mortality rate in infected mice. The study supports the development of RA as an antiviral drug and emphasizes its potential as a candidate for PRV therapy. 
651 4 |a Beijing China 
651 4 |a United States--US 
651 4 |a China 
653 |a Infections 
653 |a Cytotoxicity 
653 |a Vaccines 
653 |a Binding 
653 |a Immune system 
653 |a Herpes simplex 
653 |a β-Interferon 
653 |a Innate immunity 
653 |a Phenols 
653 |a Viruses 
653 |a Molecular modelling 
653 |a Hogs 
653 |a Mortality 
653 |a In vivo methods and tests 
653 |a Toxicity 
653 |a Kinases 
653 |a Swine 
653 |a Pseudorabies 
653 |a Rosmarinic acid 
653 |a Proteins 
653 |a Immune response 
653 |a Inflammation 
653 |a Immunity (Disease) 
653 |a DNA viruses 
653 |a Molecular docking 
653 |a Apoptosis 
653 |a Microscopy 
653 |a Herpes viruses 
653 |a Effectiveness 
653 |a Biocompatibility 
653 |a Molecular dynamics 
653 |a Viral infections 
653 |a Interferon 
653 |a Signal transduction 
653 |a Environmental 
700 1 |a Gao, Sihui 
700 1 |a Yu, Zhijie 
700 1 |a Liu, Yunhao 
700 1 |a Tang, Huaqiao 
700 1 |a Xu, Zhiwen 
700 1 |a Zhu, Ling 
700 1 |a Zhao, Ling 
700 1 |a Ye, Gang 
700 1 |a Shi, Fei 
773 0 |t BMC Microbiology  |g vol. 25 (2025), p. 1 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3187554928/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3187554928/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3187554928/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch