An improved scatter search algorithm for solving job shop scheduling problems with parallel batch processing machine

Guardat en:
Dades bibliogràfiques
Publicat a:Scientific Reports (Nature Publisher Group) vol. 15, no. 1 (2025), p. 11872
Publicat:
Nature Publishing Group
Matèries:
Accés en línia:Citation/Abstract
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3188186226
003 UK-CbPIL
022 |a 2045-2322 
024 7 |a 10.1038/s41598-025-92761-8  |2 doi 
035 |a 3188186226 
045 2 |b d20250101  |b d20251231 
084 |a 274855  |2 nlm 
245 1 |a An improved scatter search algorithm for solving job shop scheduling problems with parallel batch processing machine 
260 |b Nature Publishing Group  |c 2025 
513 |a Journal Article 
520 3 |a This paper addresses a hybrid processing system in automotive mold casting, which involves single processing machines and parallel batch processing machines. A job shop scheduling problem with parallel batch processing machines (JSP-PBPM) is developed, with the objective of minimizing the maximum completion time. First, a solution decoding strategy combined with the JSP-PBPM problem and a batch job addition algorithm is proposed. This approach addresses the impact of operation precedence relationships on conventional decoding strategies and aims to maximize the utilization of parallel batch processing machines for batch operations. Next, an Improved Scatter Search (ISS) algorithm is introduced to solve the problem. The ISS algorithm finds the optimal solution through several steps, including the construction of the initial population, improvement of the initial solution, creation of a reference set, generation of subsets, and refinement of the final solution. Finally, simulation experiments are conducted to verify the feasibility and effectiveness of the proposed algorithm and decoding strategy in solving such problems. 
653 |a Algorithms 
653 |a Job shops 
653 |a Batch processing 
653 |a Economic 
773 0 |t Scientific Reports (Nature Publisher Group)  |g vol. 15, no. 1 (2025), p. 11872 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188186226/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188186226/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch