Integrating DRN-RF with computer vision for detection of control room operator’s mental fatigue

Uloženo v:
Podrobná bibliografie
Vydáno v:PLoS One vol. 20, no. 4 (Apr 2025), p. e0320780
Hlavní autor: Ji, Zuzhen
Další autoři: Xie, Xian, Jiang, Enjing, Wang, Yuchen, Bohan, Min, Yang, Shuanghua, Chen, Yong, Pons, Dirk
Vydáno:
Public Library of Science
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3188333547
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0320780  |2 doi 
035 |a 3188333547 
045 2 |b d20250401  |b d20250430 
084 |a 174835  |2 nlm 
100 1 |a Ji, Zuzhen 
245 1 |a Integrating DRN-RF with computer vision for detection of control room operator’s mental fatigue 
260 |b Public Library of Science  |c Apr 2025 
513 |a Journal Article 
520 3 |a Control room operators encounter a substantial risk of mental fatigue, which can reduce their human reliability by diminishing concentration and responsiveness, leading to unsafe operations. There is value in detection of individuals’ mental fatigue status in the workplace. This study introduces a new method for mental fatigue detection (MFD) that combines computer vision and machine learning. Traditional methods for MFD typically rely on multi-dimensional data for fatigue analysis and detection, which can be challenging to apply in a real situation. The traditional methods such as the use of biological data, e.g., electrocardiograms, require operators to be in constant contact with sensors, while this study utilizes computer vision to collect facial data, and a machine learning model to assess fatigue states. The developed machine learning method consists both Deep Residual Network and Random Forest (DRN-RF). A comparison with existing MFD methods, including K Nearest Neighbors and Gradient Boosting Machine, has been carried out. The results show that the accuracy of the DRN-RF model reaches 94.2% and the deviation is 0.004. Evidently, the DRN-RF model demonstrates high accuracy and stability. Overall, the proposed method has the potential to contribute to improving the safety of process system operations, particularly in the aspect of human factor management. 
653 |a Fatigue 
653 |a Accuracy 
653 |a Electrocardiography 
653 |a Deep learning 
653 |a Mathematical models 
653 |a Machine learning 
653 |a Computer vision 
653 |a Electroencephalography 
653 |a Multidimensional methods 
653 |a Dimensional analysis 
653 |a Learning algorithms 
653 |a Materials fatigue 
653 |a Control rooms 
653 |a Sensors 
653 |a Decision making 
653 |a Neural networks 
653 |a Process controls 
653 |a Human factors 
653 |a Support vector machines 
653 |a Operators 
653 |a Multidimensional data 
653 |a Data collection 
653 |a Methods 
653 |a Chemical industry 
653 |a Decision trees 
653 |a Nuclear power plants 
653 |a Economic 
700 1 |a Xie, Xian 
700 1 |a Jiang, Enjing 
700 1 |a Wang, Yuchen 
700 1 |a Bohan, Min 
700 1 |a Yang, Shuanghua 
700 1 |a Chen, Yong 
700 1 |a Pons, Dirk 
773 0 |t PLoS One  |g vol. 20, no. 4 (Apr 2025), p. e0320780 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188333547/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3188333547/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188333547/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch