Comparison of Machine Learning Algorithms for Predicting Thyroid Disorders in Diabetic Patients

Uloženo v:
Podrobná bibliografie
Vydáno v:Informatica vol. 49, no. 12 (Feb 2025), p. 105
Hlavní autor: Sayyid, Hiba O
Další autoři: Mahmood, Salma A, Hamadi, Saad S
Vydáno:
Slovenian Society Informatika / Slovensko drustvo Informatika
Témata:
On-line přístup:Citation/Abstract
Full Text
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3188467301
003 UK-CbPIL
022 |a 0350-5596 
022 |a 1854-3871 
024 7 |a 10.31449/inf.v49il2.6927  |2 doi 
035 |a 3188467301 
045 2 |b d20250201  |b d20250228 
084 |a 179436  |2 nlm 
100 1 |a Sayyid, Hiba O  |u Department of Computer Science, University of Basrah, College of Computer Sciences and Information Technology, Basrah, Iraq 
245 1 |a Comparison of Machine Learning Algorithms for Predicting Thyroid Disorders in Diabetic Patients 
260 |b Slovenian Society Informatika / Slovensko drustvo Informatika  |c Feb 2025 
513 |a Feature 
520 3 |a Machine Learning (ML), a sub field of Artificial Intelligence (AL), has been used successfully in the healthcare domain for disease diagnosis. Thyroid disorders and diabetes are two of the most prevalent and interconnected chronic diseases, as both play critical roles in regulating various physiological processes in the body. This study aims to predict thyroid disorders in diabetes patients using six machine learning algorithms: Random Forest (RF), Decision Tree (DT), K-Nearest Neighbors (KNN), Logistic Regression (LR), Naive Bayes (NB), and Support Vector Machine (SVM). A locally sourced dataset comprising 44,539 instances of diabetic patients was utilized, undergoing preprocessing steps including data cleaning, encoding, and balancing. Two balancing techniques were employed: manual balancing andRandomUnderSampler. The dataset was partitioned into training and testing sets using a Stratified K-Fold cross-validation approach with 10 folds to ensure robust evaluation. Each algorithm's performance was assessed using metrics such as accuracy and Fl-score. Among the models, the RF algorithm outperformed the others, achieving the highest accuracy of 95% on the manually balanced dataset and 84% when the RandomUnderSampler technique was employed. Additionally, the Fl-scores for RF were 95% and 82%, respectively, indicating its robustness in handling imbalanced datasets. This study highlights the importance of selecting appropriate preprocessing techniques and machine learning methods for healthcare datasets. The findings can assist healthcare providers in making early diagnoses and interventions for thyroid disorders in diabetic patients, potentially improving their quality of life and overall healthcare outcomes. 
653 |a Datasets 
653 |a Hormones 
653 |a Preprocessing 
653 |a Support vector machines 
653 |a Health care 
653 |a Disorders 
653 |a Chronic illnesses 
653 |a Algorithms 
653 |a Balancing 
653 |a Artificial intelligence 
653 |a Machine learning 
653 |a Decision trees 
700 1 |a Mahmood, Salma A  |u Department of Intelligent Medical Systems, University of Basrah, College of Computer Sciences and Information Technology, Basrah, Iraq 
700 1 |a Hamadi, Saad S  |u Department of Internal Medicine, University of Basrah, College of Medicine, Basrah, Iraq 
773 0 |t Informatica  |g vol. 49, no. 12 (Feb 2025), p. 105 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188467301/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3188467301/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188467301/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch