A Unmanned Aerial Vehicle-Based Image Information Acquisition Technique for the Middle and Lower Sections of Rice Plants and a Predictive Algorithm Model for Pest and Disease Detection

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Agriculture vol. 15, no. 7 (2025), p. 790
מחבר ראשי: Guo, Xiaoyan
מחברים אחרים: Ou, Yuanzhen, Deng, Konghong, Fan, Xiaolong, Gao, Ruitao, Zhou, Zhiyan
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3188771987
003 UK-CbPIL
022 |a 2077-0472 
024 7 |a 10.3390/agriculture15070790  |2 doi 
035 |a 3188771987 
045 2 |b d20250101  |b d20251231 
084 |a 231331  |2 nlm 
100 1 |a Guo, Xiaoyan  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China 
245 1 |a A Unmanned Aerial Vehicle-Based Image Information Acquisition Technique for the Middle and Lower Sections of Rice Plants and a Predictive Algorithm Model for Pest and Disease Detection 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Aiming at the technical bottleneck of monitoring rice stalk, pest, and grass damage in the middle and lower parts of rice, this paper proposes a UAV-based image information acquisition method and disease prediction algorithm model, which provides an efficient and low-cost solution for the accurate early monitoring of rice diseases, and helps improve the scientific and intelligent level of agricultural disease prevention and control. Firstly, the UAV image acquisition system was designed and equipped with an automatic telescopic rod, 360° automatic turntable, and high-definition image sensing equipment to achieve multi-angle and high-precision data acquisition in the middle and lower regions of rice plants. At the same time, a path planning algorithm and ant colony algorithm were introduced to design the flight layout path of the UAV and improve the coverage and stability of image acquisition. In terms of image information processing, this paper proposes a multi-dimensional data fusion scheme, which combines RGB, infrared, and hyperspectral data to achieve the deep fusion of information in different bands. In disease prediction, the YOLOv8 target detection algorithm and lightweight Transformer network are adopted to determine the detection performance of small targets. The experimental results showed that the average accuracy of the YOLOv8 model (mAP@0.5) in the detection of rice curl disease was 90.13%, which was much higher than that of traditional methods such as Faster R-CNN and SSD. In addition, 1496 disease images and autonomous data sets were collected to verify that the system showed good stability and practicability in field environment. 
653 |a Data acquisition 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Algorithms 
653 |a Disease 
653 |a Disease control 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Medical imaging 
653 |a Corn 
653 |a Agricultural land 
653 |a Unmanned aerial vehicles 
653 |a Data integration 
653 |a Yeast 
653 |a Monitoring 
653 |a Ant colony optimization 
653 |a Disease detection 
653 |a Monitoring systems 
653 |a Efficiency 
653 |a Cameras 
653 |a Pests 
653 |a Target detection 
653 |a Rice 
653 |a Design 
653 |a Multidimensional data 
653 |a Image acquisition 
653 |a Information processing 
653 |a Stability 
653 |a Path planning 
653 |a High definition 
653 |a Environmental 
700 1 |a Ou, Yuanzhen  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China 
700 1 |a Deng, Konghong  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China 
700 1 |a Fan, Xiaolong  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China 
700 1 |a Gao, Ruitao  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China 
700 1 |a Zhou, Zhiyan  |u Guangdong Laboratory for Lingnan Modern Agriculture, College of Engineering, South China Agricultural University, Guangzhou 510642, China; <email>guoxiaoyan@scau.edu.cn</email> (X.G.); <email>konghong@scau.edu.cn</email> (K.D.); <email>greatertao@scau.edu.cn</email> (R.G.); Guangdong Provincial Key Laboratory of Agricultural Artificial Intelligence (GDKL-AAI), Guangzhou 510642, China; Guangdong Engineering Research Center for Agricultural Aviation Application (ERCAAA), Guangzhou 510642, China; Key Laboratory of Key Technology on Agricultural Machine and Equipment (South China Agricultural University), Ministry of Education, Guangzhou 510642, China 
773 0 |t Agriculture  |g vol. 15, no. 7 (2025), p. 790 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188771987/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188771987/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188771987/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch