Advancing Multi-UAV Inspection Dispatch Based on Bilevel Optimization and GA-NSGA-II

Uloženo v:
Podrobná bibliografie
Vydáno v:Applied Sciences vol. 15, no. 7 (2025), p. 3673
Hlavní autor: Liu, Yujing
Další autoři: Chen, Chunmei, Sun, Yu, Miao, Shaojie
Vydáno:
MDPI AG
Témata:
On-line přístup:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tagy: Přidat tag
Žádné tagy, Buďte první, kdo vytvoří štítek k tomuto záznamu!

MARC

LEADER 00000nab a2200000uu 4500
001 3188782710
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15073673  |2 doi 
035 |a 3188782710 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Liu, Yujing 
245 1 |a Advancing Multi-UAV Inspection Dispatch Based on Bilevel Optimization and GA-NSGA-II 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a In multi-UAV collaborative power grid inspection, the system efficiency of existing methods is limited by the performance of both task assignment and path planning, which is critical in large-scale task scenarios, resulting in a huge computational cost and a high possibility to local optimality. To address these challenges, a bilevel optimization framework based on GA-NSGA-II and task segmentation is proposed to balance the total inspection distance and the distance standard deviation of UAVs, where the outer optimization employs the NSGA-II to assign task units to each UAV evenly, while the inner optimization deploys an adaptive genetic algorithm with an elite retention strategy to optimize the inspection direction and order in each task domain to obtain a Pareto-optimal solution set under constraints. To avoid the dimensionality disaster, the massive inspection points are combined into task units based on the UAV’s endurance. In scenarios with 284 tower task points, the proposed algorithm has reduced the standard deviation of UAV flight distances by 41.91% to 84.63% and the longest flight distance by 29.41% to 43.98% compared to the GA-GA bilevel optimization. Against task-adaptive clustering optimization, it decreased the standard deviation by 18.25% to 94.93% and the longest flight distance by 15.97% to 37.33%. Applying it to 406 tower task points also confirmed the GA-NSGA-II bilevel optimization’s effectiveness in minimizing the total inspection distance and balancing UAV workloads. 
653 |a Elitism 
653 |a Integer programming 
653 |a Adaptability 
653 |a Assignment problem 
653 |a Planning 
653 |a Genetic algorithms 
653 |a Neural networks 
653 |a Flexibility 
653 |a Unmanned aerial vehicles 
653 |a Linear programming 
653 |a Methods 
653 |a Heuristic 
653 |a Optimization algorithms 
653 |a Traveling salesman problem 
653 |a Energy consumption 
653 |a Inspections 
653 |a Efficiency 
700 1 |a Chen, Chunmei 
700 1 |a Sun, Yu 
700 1 |a Miao, Shaojie 
773 0 |t Applied Sciences  |g vol. 15, no. 7 (2025), p. 3673 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188782710/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188782710/fulltextwithgraphics/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188782710/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch