CPDDA: A Python Package for Discrete Dipole Approximation Accelerated by CuPy

Guardat en:
Dades bibliogràfiques
Publicat a:Nanomaterials vol. 15, no. 7 (2025), p. 500
Autor principal: Xu, Dibo
Altres autors: Tuersun, Paerhatijiang, Li, Shuyuan, Wang, Meng, Jiang, Lan
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3188787504
003 UK-CbPIL
022 |a 2079-4991 
024 7 |a 10.3390/nano15070500  |2 doi 
035 |a 3188787504 
045 2 |b d20250101  |b d20251231 
084 |a 231543  |2 nlm 
100 1 |a Xu, Dibo 
245 1 |a CPDDA: A Python Package for Discrete Dipole Approximation Accelerated by CuPy 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Discrete Dipole Approximation (DDA) is a rapidly developing numerical method in recent years. DDA has found wide application in many research fields including plasmonics and atmospheric optics. Currently, few DDA packages based on Python have been reported. In this work, a Python package called CPDDA is developed. It can be used to simulate the light-scattering and -absorption properties of arbitrarily shaped particles. CPDDA uses object-oriented programming, offers high flexibility and extensibility, and provides a comprehensive database of refractive indices. The package uses the biconjugate gradient method and fast Fourier transform for program acceleration and memory optimization, and it uses parallel computation with graphics processing units to enhance program performance. The accuracy and performance of CPDDA were demonstrated by comparison with Mie theory, the MATLAB package MPDDA, and the Python package pyGDM2. Finally, CPDDA was used to simulate the variations in light-absorption and -scattering properties of ZnO@Au core-shell nanorods based on the particle size. CPDDA is useful for calculating light-scattering and -absorption properties of small particles and selecting materials with excellent optical properties. 
610 4 |a Chaumet 
653 |a Dielectric properties 
653 |a Optical properties 
653 |a Parallel processing 
653 |a Light scattering 
653 |a Atmospheric optics 
653 |a Iterative methods 
653 |a Fast Fourier transformations 
653 |a Approximation 
653 |a Numerical analysis 
653 |a Zinc oxide 
653 |a Materials selection 
653 |a Refractivity 
653 |a Numerical methods 
653 |a Linear algebra 
653 |a Gold 
653 |a Fourier transforms 
653 |a Simulation 
653 |a Optics 
653 |a Electromagnetic absorption 
653 |a Graphics processing units 
653 |a Absorption 
653 |a Dipoles 
653 |a Mie scattering 
653 |a Electric fields 
653 |a Nanorods 
653 |a Methods 
653 |a Light 
653 |a Mathematical models 
653 |a Object oriented programming 
700 1 |a Tuersun, Paerhatijiang 
700 1 |a Li, Shuyuan 
700 1 |a Wang, Meng 
700 1 |a Jiang, Lan 
773 0 |t Nanomaterials  |g vol. 15, no. 7 (2025), p. 500 
786 0 |d ProQuest  |t Materials Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188787504/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188787504/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188787504/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch