Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables

Guardado en:
Detalles Bibliográficos
Publicado en:Molecules vol. 30, no. 7 (2025), p. 1543
Autor principal: Gao, Feng
Otros Autores: Xing, Yage, Li, Jialong, Guo, Lin, Sun, Yiye, Shi, Wen, Yuan, Leiming
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3188791687
003 UK-CbPIL
022 |a 1420-3049 
024 7 |a 10.3390/molecules30071543  |2 doi 
035 |a 3188791687 
045 2 |b d20250101  |b d20251231 
084 |a 231541  |2 nlm 
100 1 |a Gao, Feng  |u College of Horticulture and Forestry, Tarim University, Alar, Xinjiang 843300, China; <email>15950516317@163.com</email> (F.G.); ; Department of Physics, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China 
245 1 |a Prediction of Total Soluble Solids in Apricot Using Adaptive Boosting Ensemble Model Combined with NIR and High-Frequency UVE-Selected Variables 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Total soluble solids (TSSs) serve as a crucial maturity indicator and quality determinant in apricots, influencing harvest timing and postharvest management decisions. This study develops an advanced framework integrating adaptive boosting (Adaboost) ensemble learning with high-frequency spectral variables selected by uninformative variable elimination (UVE) for the rapid non-destructive detection of fruit quality. Near-infrared (NIR) spectra (1000~2500 nm) were acquired and then preprocessed through robust principal component analysis (ROBPCA) for outlier detection combined with z-score normalization for spectral pretreatment. Subsequent data processes included three steps: (1) 100 continuous runs of UVE identified characteristic wavelengths, which were classified into three levels—high-frequency (≥90 times), medium-frequency (30–90 times), and low-frequency (≤30 times) subsets; (2) the development of the base optimal partial least squares regression (PLSR) models for each wavelength subset; and (3) the execution of adaptive weight optimization through the Adaboost ensemble algorithm. The experimental findings revealed the following: (1) The model established based on high-frequency wavelengths outperformed both full-spectrum model and full-characteristic wavelength model. (2) The optimized UVE-PLS-Adaboost model achieved the peak performance (R = 0.889, RMSEP = 1.267, MAE = 0.994). This research shows that the UVE-Adaboost fusion method enhances model prediction accuracy and generalization ability through multi-dimensional feature optimization and model weight allocation. The proposed framework enables the rapid, non-destructive detection of apricot TSSs and provides a reference for the quality evaluation of other fruits in agricultural applications. 
651 4 |a China 
653 |a Variables 
653 |a Machine learning 
653 |a Feature selection 
653 |a Accuracy 
653 |a Principal components analysis 
653 |a Datasets 
653 |a Spectrum analysis 
653 |a Fourier transforms 
653 |a Food quality 
653 |a Citrus fruits 
653 |a Calibration 
700 1 |a Xing, Yage  |u College of Horticulture and Forestry, Tarim University, Alar, Xinjiang 843300, China; <email>15950516317@163.com</email> (F.G.); ; Xinjiang Production & Construction Corps, Key Laboratory of Facility Agriculture, Alar, Xinjiang 843300, China; Instrumental Analysis Center, Tarim University, Alar, Xinjiang 843300, China 
700 1 |a Li, Jialong  |u College of Horticulture and Forestry, Tarim University, Alar, Xinjiang 843300, China; <email>15950516317@163.com</email> (F.G.); ; Xinjiang Production & Construction Corps, Key Laboratory of Facility Agriculture, Alar, Xinjiang 843300, China; Instrumental Analysis Center, Tarim University, Alar, Xinjiang 843300, China 
700 1 |a Guo, Lin  |u College of Horticulture and Forestry, Tarim University, Alar, Xinjiang 843300, China; <email>15950516317@163.com</email> (F.G.); ; Xinjiang Production & Construction Corps, Key Laboratory of Facility Agriculture, Alar, Xinjiang 843300, China; Instrumental Analysis Center, Tarim University, Alar, Xinjiang 843300, China 
700 1 |a Sun, Yiye  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China 
700 1 |a Shi, Wen  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China 
700 1 |a Yuan, Leiming  |u College of Electrical and Electronic Engineering, Wenzhou University, Wenzhou 325035, China 
773 0 |t Molecules  |g vol. 30, no. 7 (2025), p. 1543 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188791687/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188791687/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188791687/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch