AI and Evolutionary Computation for Intelligent Aviation Health Monitoring

Na minha lista:
Detalhes bibliográficos
Publicado no:Electronics vol. 14, no. 7 (2025), p. 1369
Autor principal: Kabashkin, Igor
Publicado em:
MDPI AG
Assuntos:
Acesso em linha:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Adicionar Tag
Sem tags, seja o primeiro a adicionar uma tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3188812113
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14071369  |2 doi 
035 |a 3188812113 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Kabashkin, Igor 
245 1 |a AI and Evolutionary Computation for Intelligent Aviation Health Monitoring 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper presents a novel framework integrating evolutionary computation and artificial intelligence for aircraft health monitoring and management systems. The research addresses critical challenges in modern aircraft maintenance through a comprehensive approach combining real-time fault detection, predictive maintenance, and multi-objective optimization. The framework employs deep learning models for fault detection, achieving about 97% classification accuracy with an F1-score of 0.97, while remaining useful life prediction yields an R2 score of 0.89 with a mean absolute error of 9.8 h. Evolutionary algorithms optimize maintenance strategies, reducing downtime and costs by up to 22% compared to traditional methods. The methodology includes robust data processing protocols, feature engineering techniques, and a modular system architecture supporting real-time monitoring and decision-making. Simulation experiments demonstrate the framework’s effectiveness in balancing maintenance objectives while maintaining high reliability. The research provides practical implementation guidelines and addresses key challenges in computational efficiency, data quality, and system integration. The results show significant improvements in maintenance planning efficiency and system reliability compared to traditional approaches. The framework’s modular design enables scalability and adaptation to various aircraft systems, offering broader applications in complex technical system maintenance. 
653 |a Modular engineering 
653 |a Structural health monitoring 
653 |a Evolutionary computation 
653 |a Data processing 
653 |a System reliability 
653 |a Artificial intelligence 
653 |a Modular systems 
653 |a Genetic algorithms 
653 |a Neural networks 
653 |a Optimization 
653 |a Aviation 
653 |a Modular design 
653 |a Life prediction 
653 |a Multiple objective analysis 
653 |a Machine learning 
653 |a Real time 
653 |a Fault detection 
653 |a Aircraft maintenance 
653 |a Downtime 
653 |a Management systems 
653 |a Evolutionary algorithms 
653 |a Predictive maintenance 
773 0 |t Electronics  |g vol. 14, no. 7 (2025), p. 1369 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188812113/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188812113/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188812113/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch