Recent Trends and Insights in Semantic Web and Ontology-Driven Knowledge Representation Across Disciplines Using Topic Modeling

Gardado en:
Detalles Bibliográficos
Publicado en:Electronics vol. 14, no. 7 (2025), p. 1313
Autor Principal: Stănescu, Georgiana
Outros autores: Oprea, Simona-Vasilica
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3188812927
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14071313  |2 doi 
035 |a 3188812927 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Stănescu, Georgiana 
245 1 |a Recent Trends and Insights in Semantic Web and Ontology-Driven Knowledge Representation Across Disciplines Using Topic Modeling 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This research aims to investigate the roles of ontology and Semantic Web Technologies (SWT) in modern knowledge representation and data management. By analyzing a dataset of 10,037 academic articles from Web of Science (WoS) published in the last 6 years (2019–2024) across several fields, such as computer science, engineering, and telecommunications, our research identifies important trends in the use of ontologies and semantic frameworks. Through bibliometric and semantic analyses, Natural Language Processing (NLP), and topic modeling using Latent Dirichlet Allocation (LDA) and BERT-clustering approach, we map the evolution of semantic technologies, revealing core research themes such as ontology engineering, knowledge graphs, and linked data. Furthermore, we address existing research gaps, including challenges in the semantic web, dynamic ontology updates, and scalability in Big Data environments. By synthesizing insights from the literature, our research provides an overview of the current state of semantic web research and its prospects. With a 0.75 coherence score and perplexity = 48, the topic modeling analysis identifies three distinct thematic clusters: (1) Ontology-Driven Knowledge Representation and Intelligent Systems, which focuses on the use of ontologies for AI integration, machine interpretability, and structured knowledge representation; (2) Bioinformatics, Gene Expression and Biological Data Analysis, highlighting the role of ontologies and semantic frameworks in biomedical research, particularly in gene expression, protein interactions and biological network modeling; and (3) Advanced Bioinformatics, Systems Biology and Ethical-Legal Implications, addressing the intersection of biological data sciences with ethical, legal and regulatory challenges in emerging technologies. The clusters derived from BERT embeddings and clustering show thematic overlap with the LDA-derived topics but with some notable differences in emphasis and granularity. Our contributions extend beyond theoretical discussions, offering practical implications for enhancing data accessibility, semantic search, and automated knowledge discovery. 
653 |a Interoperability 
653 |a Computer science 
653 |a Big Data 
653 |a Trends 
653 |a Bioinformatics 
653 |a Ontology 
653 |a Data mining 
653 |a Modelling 
653 |a Data analysis 
653 |a Semantic web 
653 |a Automation 
653 |a Keywords 
653 |a Knowledge representation 
653 |a Innovations 
653 |a Data management 
653 |a Bibliometrics 
653 |a Gene expression 
653 |a Clustering 
653 |a Business intelligence 
653 |a Communications networks 
653 |a Natural language processing 
653 |a Ethics 
653 |a Semantics 
700 1 |a Oprea, Simona-Vasilica 
773 0 |t Electronics  |g vol. 14, no. 7 (2025), p. 1313 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188812927/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188812927/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188812927/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch