Enhancing Policy Generation with GraphRAG and YouTube Data: A Logistics Case Study

Збережено в:
Бібліографічні деталі
Опубліковано в::Electronics vol. 14, no. 7 (2025), p. 1241
Автор: Naganawa, Hisatoshi
Інші автори: Hirata, Enna
Опубліковано:
MDPI AG
Предмети:
Онлайн доступ:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Теги: Додати тег
Немає тегів, Будьте першим, хто поставить тег для цього запису!

MARC

LEADER 00000nab a2200000uu 4500
001 3188813064
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14071241  |2 doi 
035 |a 3188813064 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Naganawa, Hisatoshi  |u Faculty of Ocean Science and Technology, Kobe University, Kobe 658-0022, Japan 
245 1 |a Enhancing Policy Generation with GraphRAG and YouTube Data: A Logistics Case Study 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Graph-based retrieval-augmented generation (GraphRAG) represents an innovative advancement in natural language processing, leveraging the power of large language models (LLMs) for complex tasks such as policy generation. This research presents a GraphRAG model trained on YouTube data containing keywords related to logistics issues to generate policy proposals addressing these challenges. The collected data include both video subtitles and user comments, which are used to fine-tune the GraphRAG model. To evaluate the effectiveness of this approach, the performance of the proposed model is compared to a standard generative pre-trained transformer (GPT) model. The results show that the GraphRAG model outperforms the GPT model in most prompts, highlighting its potential to generate more accurate and contextually relevant policy recommendations. This study not only contributes to the evolving field of LLM-based natural language processing (NLP) applications but also explores new methods for improving model efficiency and scalability in real-world domains like logistics policy making. 
651 4 |a Japan 
653 |a Working hours 
653 |a Shortages 
653 |a Large language models 
653 |a Artificial intelligence 
653 |a Truck drivers 
653 |a Structural equation modeling 
653 |a Task complexity 
653 |a Questionnaires 
653 |a Well being 
653 |a Supply & demand 
653 |a Logistics 
653 |a Natural language processing 
653 |a Data collection 
653 |a Trucking industry 
653 |a Case studies 
653 |a Statistical analysis 
700 1 |a Hirata, Enna  |u Graduate School of Maritime Sciences, Kobe University, Kobe 658-0022, Japan 
773 0 |t Electronics  |g vol. 14, no. 7 (2025), p. 1241 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188813064/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188813064/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188813064/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch