Multi-Satellite Task Parallelism via Priority-Aware Decomposition and Dynamic Resource Mapping

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Mathematics vol. 13, no. 7 (2025), p. 1183
1. Verfasser: Wang, Shangpeng
Weitere Verfasser: Zhang, Chenyuan, Su, Zihan, Liu, Limin, Long, Jun
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3188871976
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13071183  |2 doi 
035 |a 3188871976 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Wang, Shangpeng  |u School of Computer Science and Engineering, Central South University, Changsha 410083, China; <email>204701019@csu.edu.cn</email> (S.W.); <email>zhangchenyuan@csu.edu.cn</email> (C.Z.); <email>szh@csu.edu.cn</email> (Z.S.); <email>liulimin@csu.edu.cn</email> (L.L.) 
245 1 |a Multi-Satellite Task Parallelism via Priority-Aware Decomposition and Dynamic Resource Mapping 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Multi-satellite collaborative computing has achieved task decomposition and collaborative execution through inter-satellite links (ISLs), which has significantly improved the efficiency of task execution and system responsiveness. However, existing methods focus on single-task execution and lack multi-task parallel processing capability. Most methods ignore task priorities and dependencies, leading to excessive waiting times and poor scheduling results. To address these problems, this paper proposes a task decomposition and resource mapping method based on task priorities and resource constraints. First, we introduce a graph theoretic model to represent the task dependency and priority relationships explicitly, combined with a novel algorithm for task decomposition. Meanwhile, we construct a resource allocation model based on game theory and combine it with deep reinforcement learning to achieve resource mapping in a dynamic environment. Finally, we adopt the theory of temporal logic to formalize the execution order and time constraints of tasks and solve the dynamic scheduling problem through mixed-integer nonlinear programming to ensure the optimality and real-time updating of the scheduling scheme. The experimental results demonstrate that the proposed method improves resource utilization by up to about 24% and reduces overall execution time by up to about 42.6% in large-scale scenarios. 
653 |a Parallel processing 
653 |a Game theory 
653 |a Task scheduling 
653 |a Deep learning 
653 |a Collaboration 
653 |a Satellite communications 
653 |a Priorities 
653 |a Optimization 
653 |a Resource allocation 
653 |a Mapping 
653 |a Decomposition 
653 |a Energy consumption 
653 |a Nonlinear programming 
653 |a Efficiency 
653 |a Scheduling 
653 |a Temporal logic 
653 |a Remote sensing 
653 |a Intersatellite communications 
653 |a Cooperation 
653 |a Genetic algorithms 
653 |a Convex analysis 
653 |a Algorithms 
653 |a Linear programming 
653 |a Methods 
653 |a Mixed integer 
653 |a Resource utilization 
653 |a Real time 
653 |a Constraints 
653 |a Ground stations 
700 1 |a Zhang, Chenyuan  |u School of Computer Science and Engineering, Central South University, Changsha 410083, China; <email>204701019@csu.edu.cn</email> (S.W.); <email>zhangchenyuan@csu.edu.cn</email> (C.Z.); <email>szh@csu.edu.cn</email> (Z.S.); <email>liulimin@csu.edu.cn</email> (L.L.) 
700 1 |a Su, Zihan  |u School of Computer Science and Engineering, Central South University, Changsha 410083, China; <email>204701019@csu.edu.cn</email> (S.W.); <email>zhangchenyuan@csu.edu.cn</email> (C.Z.); <email>szh@csu.edu.cn</email> (Z.S.); <email>liulimin@csu.edu.cn</email> (L.L.) 
700 1 |a Liu, Limin  |u School of Computer Science and Engineering, Central South University, Changsha 410083, China; <email>204701019@csu.edu.cn</email> (S.W.); <email>zhangchenyuan@csu.edu.cn</email> (C.Z.); <email>szh@csu.edu.cn</email> (Z.S.); <email>liulimin@csu.edu.cn</email> (L.L.) 
700 1 |a Long, Jun  |u School of Computer Science and Engineering, Central South University, Changsha 410083, China; <email>204701019@csu.edu.cn</email> (S.W.); <email>zhangchenyuan@csu.edu.cn</email> (C.Z.); <email>szh@csu.edu.cn</email> (Z.S.); <email>liulimin@csu.edu.cn</email> (L.L.); Big Data Institute, Central South University, Changsha 410083, China 
773 0 |t Mathematics  |g vol. 13, no. 7 (2025), p. 1183 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188871976/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188871976/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188871976/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch