Joint Event Density and Curvature Within Spatio-Temporal Neighborhoods-Based Event Camera Noise Reduction and Pose Estimation Method for Underground Coal Mine

Furkejuvvon:
Bibliográfalaš dieđut
Publikašuvnnas:Mathematics vol. 13, no. 7 (2025), p. 1198
Váldodahkki: Yang, Wenjuan
Eará dahkkit: Jiang, Jie, Zhang, Xuhui, Yang, Ji, Zhu, Le, Xie, Yanbin, Ren, Zhiteng
Almmustuhtton:
MDPI AG
Fáttát:
Liŋkkat:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Fáddágilkorat: Lasit fáddágilkoriid
Eai fáddágilkorat, Lasit vuosttaš fáddágilkora!

MARC

LEADER 00000nab a2200000uu 4500
001 3188871980
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13071198  |2 doi 
035 |a 3188871980 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Yang, Wenjuan  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.); Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, No. 58, Yanta Road, Xi’an 710054, China 
245 1 |a Joint Event Density and Curvature Within Spatio-Temporal Neighborhoods-Based Event Camera Noise Reduction and Pose Estimation Method for Underground Coal Mine 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Aiming at the problems of poor image quality of traditional cameras and serious noise interference of event cameras under complex lighting conditions in coal mines, an event denoising algorithm fusing spatio-temporal information and a method of denoising event target pose estimation is proposed. The denoising algorithm constructs a spherical spatio-temporal neighborhood to enhance the spatio-temporal denseness and continuity of valid events, and combines event density and curvature to achieve event stream denoising. The attitude estimation framework adopts the noise reduction event and global optimal perspective-n-line (OPNL) methods to obtain the initial target attitude, and then establishes the event line correlation model through the robust estimation, and achieves the attitude tracking by minimizing the event line distance. The experimental results show that compared with the existing methods, the noise reduction algorithm proposed in this paper has a noise reduction rate of more than 99.26% on purely noisy data, and the event structure ratio (ESR) is improved by 47% and 5% on DVSNoise20 dataset and coal mine data, respectively. The maximum absolute trajectory error of the localization method is 2.365 cm, and the mean square error is reduced by 2.263% compared with the unfiltered event localization method. 
653 |a Localization method 
653 |a Mines 
653 |a Coal mining 
653 |a Cameras 
653 |a Underground mines 
653 |a Noise reduction 
653 |a Neural networks 
653 |a Sensors 
653 |a Algorithms 
653 |a Image quality 
653 |a Pose estimation 
653 |a Curvature 
653 |a Localization 
653 |a Density 
653 |a Neighborhoods 
653 |a Coal mines 
700 1 |a Jiang, Jie  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.) 
700 1 |a Zhang, Xuhui  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.); Shaanxi Key Laboratory of Mine Electromechanical Equipment Intelligent Detection and Control, No. 58, Yanta Road, Xi’an 710054, China 
700 1 |a Yang, Ji  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.) 
700 1 |a Zhu, Le  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.) 
700 1 |a Xie, Yanbin  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.) 
700 1 |a Ren, Zhiteng  |u School of Mechanical Engineering, Xi’an University of Science and Technology, No. 58, Mid-Yanta Road, Xi’an 710054, China; <email>yangwenjuan@xust.edu.cn</email> (W.Y.); <email>23205108052@stu.xust.edu.cn</email> (J.J.); <email>23205016008@stu.xust.edu.cn</email> (Y.J.); <email>23205224114@stu.xust.edu.cn</email> (L.Z.); <email>23205016028@stu.xust.edu.cn</email> (Y.X.); <email>23205224138@stu.xust.edu.cn</email> (Z.R.) 
773 0 |t Mathematics  |g vol. 13, no. 7 (2025), p. 1198 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188871980/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188871980/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188871980/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch