Multi-Dimensional Parameter-Estimation Method for a Spatial Target Based on the Micro-Range Decomposition of a High-Resolution Range Profile

Guardado en:
Detalles Bibliográficos
Publicado en:Remote Sensing vol. 17, no. 7 (2025), p. 1294
Autor principal: Wang, Xing
Otros Autores: Yang, Degui, Zhao, Zhichen
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3188878913
003 UK-CbPIL
022 |a 2072-4292 
024 7 |a 10.3390/rs17071294  |2 doi 
035 |a 3188878913 
045 2 |b d20250101  |b d20251231 
084 |a 231556  |2 nlm 
100 1 |a Wang, Xing 
245 1 |a Multi-Dimensional Parameter-Estimation Method for a Spatial Target Based on the Micro-Range Decomposition of a High-Resolution Range Profile 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The high-precision estimation of multi-dimensional parameters for spatial targets based on high-resolution range profiles is crucial for target recognition. However, existing estimation methods face difficulties in resolving the strong coupling between the target shape and the micro-motion parameters, as well as in fully utilizing micro-motion information under complex modulation characteristics. To address these challenges, this paper proposes a multi-dimensional parameter-estimation method for spatial targets based on micro-range decomposition. A micro-range model of the target is first constructed, and the micro-range modulation characteristics are analyzed. Then, micro-range coefficients are selected based on their Cramér–Rao lower bound (CRLB), and the correlation between these coefficients and target parameters is exploited for scattering center matching. An optimization model is further built for multi-dimensional parameter estimation, enabling the accurate estimation of parameters such as precession frequency, precession angle, and structural dimensions under both single-view and multi-view conditions. The experimental results show that in the dual-view case, all parameters are estimated with relative errors (REs) below 1.15% and root mean square error (RMSE) values below 0.05. In the single-view case, key parameters are estimated with REs under 15%. Compared with conventional methods, the proposed method achieves lower RMSE and significantly improved robustness and stability. These results demonstrate the effectiveness and practical potential of the proposed method for spatial target parameter estimation. 
653 |a Lower bounds 
653 |a Cramer-Rao bounds 
653 |a Parameter estimation 
653 |a Fourier transforms 
653 |a Modulation 
653 |a Root-mean-square errors 
653 |a High resolution 
653 |a Decomposition 
653 |a Target recognition 
653 |a Information processing 
653 |a Algorithms 
653 |a Precession 
653 |a Optimization models 
700 1 |a Yang, Degui 
700 1 |a Zhao, Zhichen 
773 0 |t Remote Sensing  |g vol. 17, no. 7 (2025), p. 1294 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188878913/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188878913/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188878913/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch