Digital Mapping of Soil pH and Driving Factor Analysis Based on Environmental Variable Screening

Guardado en:
Bibliografiske detaljer
Udgivet i:Sustainability vol. 17, no. 7 (2025), p. 3173
Hovedforfatter: Huang, He
Andre forfattere: Liu, Yaolin, Liu, Yanfang, Tong, Zhaomin, Ren, Zhouqiao, Xie, Yifan
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3188880753
003 UK-CbPIL
022 |a 2071-1050 
024 7 |a 10.3390/su17073173  |2 doi 
035 |a 3188880753 
045 2 |b d20250101  |b d20251231 
084 |a 231634  |2 nlm 
100 1 |a Huang, He  |u School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; <email>2022182050055@whu.edu.cn</email> (H.H.); <email>yfliu610@whu.edu.cn</email> (Y.L.); <email>2019202050107@whu.edu.cn</email> (Z.T.); <email>2021182050044@whu.edu.cn</email> (Y.X.) 
245 1 |a Digital Mapping of Soil pH and Driving Factor Analysis Based on Environmental Variable Screening 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study comprehensively considers soil formation factors such as land use types, soil types, depths, and geographical conditions in Lanxi City, China. Using multi-source public data, three environmental variable screening methods, the Boruta algorithm, Recursive Feature Elimination (RFE), and Particle Swarm Optimization (PSO), were used to optimize and combine 47 environmental variables for the modeling of soil pH based on the data collected from farmland in the study area in 2022, and their effects were evaluated. A Random Forest (RF) model was used to predict soil pH in the study area. At the same time, Pearson correlation analysis, an environmental variable importance assessment based on the RF model, and SHAP explanatory model were used to explore the main controlling factors of soil pH and reveal its spatial differentiation mechanism. The results showed that in the presence of a large number of environmental variables, the model with covariates selected by PSO before the application of the Random Forest algorithm had higher prediction accuracy than that of Boruta–RF, RFE–RF, and all variable prediction RF models (MAE = 0.496, RMSE = 0.641, R2 = 0.413, LCCC = 0.508). This indicates that PSO, as a covariate selection method, effectively optimized the input variables for the RF model, enhancing its performance. In addition, the results of the Pearson correlation analysis, RF-model-based environmental variable importance assessment, and SHAP explanatory model consistently indicate that Channel Network Base Level (CNBL), Elevation (DEM), Temperature mean (T_m), Evaporation (E_m), Land surface temperature mean (LST_m), and Humidity mean (H_m) are key factors affecting the spatial differentiation of soil pH. In summary, the approach of using PSO for covariate selection before applying the RF model exhibits high prediction accuracy and can serve as an effective method for predicting the spatial distribution of soil pH, providing important references for accurately simulating the spatial mapping of soil attributes in hilly and basin areas. 
651 4 |a Tibetan Plateau 
651 4 |a China 
651 4 |a Zhejiang China 
653 |a Soils 
653 |a Computer centers 
653 |a Machine learning 
653 |a Software 
653 |a Accuracy 
653 |a Regression analysis 
653 |a Topography 
653 |a Variables 
653 |a Agricultural land 
653 |a Feature selection 
653 |a Data collection 
653 |a Land use 
653 |a Algorithms 
653 |a Digital maps 
700 1 |a Liu, Yaolin  |u School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; <email>2022182050055@whu.edu.cn</email> (H.H.); <email>yfliu610@whu.edu.cn</email> (Y.L.); <email>2019202050107@whu.edu.cn</email> (Z.T.); <email>2021182050044@whu.edu.cn</email> (Y.X.) 
700 1 |a Liu, Yanfang  |u School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; <email>2022182050055@whu.edu.cn</email> (H.H.); <email>yfliu610@whu.edu.cn</email> (Y.L.); <email>2019202050107@whu.edu.cn</email> (Z.T.); <email>2021182050044@whu.edu.cn</email> (Y.X.) 
700 1 |a Tong, Zhaomin  |u School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; <email>2022182050055@whu.edu.cn</email> (H.H.); <email>yfliu610@whu.edu.cn</email> (Y.L.); <email>2019202050107@whu.edu.cn</email> (Z.T.); <email>2021182050044@whu.edu.cn</email> (Y.X.) 
700 1 |a Ren, Zhouqiao  |u Institute of Digital Agriculture, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China; <email>renzq@zaas.ac.cn</email> 
700 1 |a Xie, Yifan  |u School of Resource and Environmental Science, Wuhan University, Wuhan 430079, China; <email>2022182050055@whu.edu.cn</email> (H.H.); <email>yfliu610@whu.edu.cn</email> (Y.L.); <email>2019202050107@whu.edu.cn</email> (Z.T.); <email>2021182050044@whu.edu.cn</email> (Y.X.) 
773 0 |t Sustainability  |g vol. 17, no. 7 (2025), p. 3173 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3188880753/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3188880753/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3188880753/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch