Using a Just-In-Time Approach in the Green Supply Chain, Taking Into Account CO2 Emissions, Under Uncertainty in the Pre- and Post-COVID-19 Situation

Guardado en:
Detalles Bibliográficos
Publicado en:Discrete Dynamics in Nature and Society vol. 2025 (2025)
Autor principal: Abbasi, Sina
Otros Autores: Jabari, Sobhan, Mirzaei, Akram, Ashkan Azimi azad, Zamanian, Saba
Publicado:
John Wiley & Sons, Inc.
Materias:
Acceso en línea:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3189545610
003 UK-CbPIL
022 |a 1026-0226 
022 |a 1607-887X 
024 7 |a 10.1155/ddns/2153480  |2 doi 
035 |a 3189545610 
045 2 |b d20250101  |b d20251231 
084 |a 130315  |2 nlm 
100 1 |a Abbasi, Sina  |u Department of Industrial Engineering Islamic Azad University Lahijan Branch, Lahijan Iran 
245 1 |a Using a Just-In-Time Approach in the Green Supply Chain, Taking Into Account CO<sub>2</sub> Emissions, Under Uncertainty in the Pre- and Post-COVID-19 Situation 
260 |b John Wiley & Sons, Inc.  |c 2025 
513 |a Journal Article 
520 3 |a The main objective of this study is to develop a fuzzy-based approach for building a multistage, multiproduct, and multiperiod supply chain network (SCN) after and before the COVID-19 pandemic. The proposed model optimizes production and distribution planning under uncertainty in a multiperiod stochastic process network. The model is designed to help decision-makers manage the green supply chain (GSC) of their organizations. It was developed using the mixed-integer linear programming (MILP) approach. The model aims to maximize customer satisfaction in the pre- and post-COVID-19 era by reducing the total cost and delivery time they face. The model also estimates production, asset locations, order allocation, and inventory levels. Under uncertain conditions, a new probabilistic MILP model addresses the multiproduct, multiperiod SCN design (SCND) problem. The two objectives of this model are to maximize time and cost by using the concepts of total cost of ownership, activity-based costing, and just-in-time (JIT) production. The model’s outputs include the quantity of goods purchased, produced, inventoried, delivered, and transported and the selection of suppliers before and after the COVID situation. A numerical example solved using the above technique is given to evaluate and validate the model and the proposed solution approach. Finally, the results of the study are presented. 
653 |a Mathematical programming 
653 |a Linear programming 
653 |a Just in time 
653 |a Stochastic processes 
653 |a Fuzzy sets 
653 |a Component and supplier management 
653 |a Environmental performance 
653 |a Integer programming 
653 |a Optimization techniques 
653 |a Carbon 
653 |a Social sustainability 
653 |a Supply chains 
653 |a Operations management 
653 |a Environmental impact 
653 |a Literature reviews 
653 |a Mixed integer 
653 |a Manufacturing 
653 |a Logistics 
653 |a Uncertainty 
653 |a Inventory 
653 |a Disease transmission 
653 |a COVID-19 
700 1 |a Jabari, Sobhan  |u Department of Industrial Engineering Iran University Science and Technology Tehran Iran 
700 1 |a Mirzaei, Akram  |u Faculty of Skills and Entrepreneurship Islamic Azad University Shahr-e-Qods Branch, Tehran Iran 
700 1 |a Ashkan Azimi azad  |u Faculty of Skills and Entrepreneurship Islamic Azad University Shahr-e-Qods Branch, Tehran Iran 
700 1 |a Zamanian, Saba  |u Faculty of Industrial Engineering Kish International Campus University of Tehran Kish, Iran 
773 0 |t Discrete Dynamics in Nature and Society  |g vol. 2025 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3189545610/abstract/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3189545610/fulltext/embedded/J7RWLIQ9I3C9JK51?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3189545610/fulltextPDF/embedded/J7RWLIQ9I3C9JK51?source=fedsrch