SCSO: snake optimization with sine-cosine algorithm for parameter extraction of solar photovoltaic models

Gardado en:
Detalles Bibliográficos
Publicado en:SN Applied Sciences vol. 7, no. 4 (Apr 2025), p. 334
Publicado:
Springer Nature B.V.
Materias:
Acceso en liña:Citation/Abstract
Full Text
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3190986028
003 UK-CbPIL
022 |a 2523-3963 
022 |a 2523-3971 
024 7 |a 10.1007/s42452-025-06756-1  |2 doi 
035 |a 3190986028 
045 2 |b d20250401  |b d20250430 
245 1 |a SCSO: snake optimization with sine-cosine algorithm for parameter extraction of solar photovoltaic models 
260 |b Springer Nature B.V.  |c Apr 2025 
513 |a Journal Article 
520 3 |a Solar power generation is a clean and sustainable energy source. To ensure the efficient operation of photovoltaic (PV) systems, it is essential to develop accurate equivalent models of PV cells and precisely determine their unknown parameters. However, due to the nonlinear and multimodal characteristics of PV systems, accurately extracting PV parameters remains a significant challenge. This paper proposes a hybrid Snake Optimization combined with a Sine–Cosine Algorithm (SCSO) to address the PV parameter extraction problem. The proposed algorithm incorporates three key improvements: (1) integration of the Sine–Cosine Algorithm to enhance the bio-inspired Snake Optimization, balancing exploration and exploitation; (2)The parameters C1 and C2 are adaptively adjusted, and the Newton–Raphson method is introduced to accelerate the algorithm’s convergence speed which accelerates convergence; and (3) application of a lens imaging reverse learning strategy to improve exploration capabilities and population diversity, preventing the algorithm from becoming trapped in local optima. First, the performance of the SCSO algorithm is qualitatively analyzed using the CEC2022 test functions. Then, the algorithm is applied to extract parameters for three different PV modules. Finally, two commercial models (TFST 40 and MCSM 55) are tested under varying environmental conditions to validate the algorithm’s accuracy. Experimental results demonstrate that SCSO outperforms several state-of-the-art metaheuristic algorithms, achieving higher precision and faster convergence. Article Highlights<list list-type="bullet"><list-item></list-item>This paper proposes a new hybrid Snake Optimization combined with the Sine–Cosine Algorithm (SCSO) and conducts a qualitative analysis of the improved algorithm using CEC2022 test functions, demonstrating its superior performance.<list-item>The SCSO is applied to the extraction of unknown parameters in six solar photovoltaic module models, including the Single Diode Model (SDM), Double Diode Model (DDM), and PV module model.</list-item><list-item>Compared to other metaheuristic algorithms, the SCSO achieves faster and more precise parameter extraction, as demonstrated on two commercial PV models, TFST 40 and MCSM 55.</list-item> 
653 |a Algorithms 
653 |a Clean technology 
653 |a Cell culture 
653 |a Sustainable energy 
653 |a Trigonometric functions 
653 |a Newton-Raphson method 
653 |a Environmental conditions 
653 |a Solar power generation 
653 |a Clean energy 
653 |a Feature selection 
653 |a Energy sources 
653 |a Convergence 
653 |a Heuristic methods 
653 |a Photovoltaic cells 
653 |a Medical diagnosis 
653 |a Qualitative analysis 
653 |a Photovoltaics 
653 |a Fossil fuels 
653 |a Optimization 
653 |a Methods 
653 |a Alternative energy sources 
653 |a Optimization algorithms 
653 |a Parameters 
653 |a Solar power 
653 |a Parameter estimation 
653 |a Economic 
653 |a Environmental 
773 0 |t SN Applied Sciences  |g vol. 7, no. 4 (Apr 2025), p. 334 
786 0 |d ProQuest  |t Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3190986028/abstract/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3190986028/fulltext/embedded/H09TXR3UUZB2ISDL?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3190986028/fulltextPDF/embedded/H09TXR3UUZB2ISDL?source=fedsrch