Optimization model for mineral composition data analysis and its application in jade classification

Αποθηκεύτηκε σε:
Λεπτομέρειες βιβλιογραφικής εγγραφής
Εκδόθηκε σε:Applied Mathematics and Nonlinear Sciences vol. 9, no. 1 (2024)
Κύριος συγγραφέας: Zheng, Ping
Άλλοι συγγραφείς: Xiao, Qinghua
Έκδοση:
De Gruyter Brill Sp. z o.o., Paradigm Publishing Services
Θέματα:
Διαθέσιμο Online:Citation/Abstract
Full Text - PDF
Ετικέτες: Προσθήκη ετικέτας
Δεν υπάρχουν, Καταχωρήστε ετικέτα πρώτοι!

MARC

LEADER 00000nab a2200000uu 4500
001 3191213703
003 UK-CbPIL
022 |a 2444-8656 
024 7 |a 10.2478/amns-2024-2562  |2 doi 
035 |a 3191213703 
045 2 |b d20240101  |b d20241231 
100 1 |a Zheng, Ping  |u Department of Natural Resources, Hunan Vocational College of Engineering, Changsha, Hunan, 410151, China 
245 1 |a Optimization model for mineral composition data analysis and its application in jade classification 
260 |b De Gruyter Brill Sp. z o.o., Paradigm Publishing Services  |c 2024 
513 |a Journal Article 
520 3 |a The classification of jade grade has always been a very critical part of the jade industry, and improving the accuracy of jade grade classification is of great significance to the sustainable development of the jade industry. The study constructs a mineral identification classification model based on Raman spectroscopy + PCA through Raman spectroscopy and PCA principal component analysis and analyzes the data of jade grades and constituents. The actual performance of this paper’s model is explored by comparing its effectiveness with other algorithmic models in jade classification and the accuracy of classification parameters. The model in this paper is feasible in classifying the four grades of Hetian jade (seed material, gobi material, shanliushui material, and shanmu material). Green dense jade’s main minerals are <unk>-quartz and a few other minerals, including albite, hematite, graphite, and tourmaline. The main compositions of the sample jade are SiO2, Al2O3, and K2O. The overall accuracy of this paper’s model in classifying Xinjiang Hotan jade grades is 97.9%, which is significantly higher than that of the KNN classification algorithm and SVM classification algorithm. The total accuracy of this paper’s model on each parameter of jade grade is 85, which is higher than the 60 of the KNN algorithm and the 62 of the SVM algorithm, and the classification accuracy grade is high. 
653 |a Accuracy 
653 |a Algorithms 
653 |a Spectrum analysis 
653 |a Classification 
700 1 |a Xiao, Qinghua  |u Department of Natural Resources, Hunan Vocational College of Engineering, Changsha, Hunan, 410151, China 
773 0 |t Applied Mathematics and Nonlinear Sciences  |g vol. 9, no. 1 (2024) 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3191213703/abstract/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3191213703/fulltextPDF/embedded/IZYTEZ3DIR4FRXA2?source=fedsrch