Machine Learning-Based Identification of Cellulose Particle Pre-Bridging and Bridging Stages in Transformer Oil

Gardado en:
Detalles Bibliográficos
Publicado en:International Journal of Advanced Computer Science and Applications vol. 16, no. 3 (2025)
Autor Principal: PDF
Publicado:
Science and Information (SAI) Organization Limited
Materias:
Acceso en liña:Citation/Abstract
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3192357714
003 UK-CbPIL
022 |a 2158-107X 
022 |a 2156-5570 
024 7 |a 10.14569/IJACSA.2025.0160337  |2 doi 
035 |a 3192357714 
045 2 |b d20250101  |b d20251231 
100 1 |a PDF 
245 1 |a Machine Learning-Based Identification of Cellulose Particle Pre-Bridging and Bridging Stages in Transformer Oil 
260 |b Science and Information (SAI) Organization Limited  |c 2025 
513 |a Journal Article 
520 3 |a The deterioration of transformer oil quality is influenced by factors including the presence of acids, water, and other contaminates such as cellulose particles and metal dust. The dielectric strength of the oil decreases over time and depending on the service conditions. This study introduces an efficient machine learning method to classify the pre-bridging and bridging stages by analyzing the formation of cellulose particle bridges in synthetic ester transformer oil. It is important to note that the pre-bridging and bridging stages indicate a pre-breakdown condition. The machine learning approach implements the combination of digital image processing (DIP) technique and support vector machine (SVM). The DIP technique, specifically the feature extraction method, captures the feature descriptors from the cellulose particles bridging images including area, MajorAxisLength, MinorAxisLength, orientation, contrast, correlation, homogeneity and energy. These descriptors are used in SVM to assess the pre-bridging and bridging stages in transformer oil without human intervention. Various SVM models were implemented, including linear, quadratic, cubic, fine Gaussian, medium Gaussian, and coarse Gaussian. The results achieved 96.5% accuracy using quadratic and cubic SVM models with the eight feature descriptors. This research has significant implications, allowing early detection of transformer breakdown, prolonging transformer lifespan, ensuring uninterrupted power plant operations, and potentially reducing replacement costs and electricity disruptions due to late breakdown detection. 
651 4 |a Malaysia 
653 |a Feature extraction 
653 |a Digital imaging 
653 |a Machine learning 
653 |a Support vector machines 
653 |a Energy costs 
653 |a Homogeneity 
653 |a Dielectric strength 
653 |a Prebreakdown 
653 |a Power plants 
653 |a Image processing 
653 |a Cellulose esters 
653 |a Breakdown 
653 |a Accuracy 
653 |a Deep learning 
653 |a Computer science 
653 |a Breakdowns 
653 |a Electrical engineering 
653 |a Artificial intelligence 
653 |a Spectrum analysis 
653 |a Computer vision 
653 |a Cellulose 
653 |a Computer engineering 
653 |a Algorithms 
653 |a Decision trees 
773 0 |t International Journal of Advanced Computer Science and Applications  |g vol. 16, no. 3 (2025) 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3192357714/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3192357714/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch