A Hybrid Strategy for Forward Kinematics of the Stewart Platform Based on Dual Quaternion Neural Network and ARMA Time Series Prediction

Guardado en:
Detalles Bibliográficos
Publicado en:Actuators vol. 14, no. 4 (2025), p. 159
Autor principal: Tao Jie
Otros Autores: Zhou Huicheng, Fan, Wei
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194472239
003 UK-CbPIL
022 |a 2076-0825 
024 7 |a 10.3390/act14040159  |2 doi 
035 |a 3194472239 
045 2 |b d20250101  |b d20251231 
084 |a 231328  |2 nlm 
100 1 |a Tao Jie  |u School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; taojie@hust.edu.cn 
245 1 |a A Hybrid Strategy for Forward Kinematics of the Stewart Platform Based on Dual Quaternion Neural Network and ARMA Time Series Prediction 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The forward kinematics of the Stewart platform is crucial for precise control and reliable operation in six-degree-of-freedom motion. However, there are some shortcomings in practical applications, such as calculation precision, computational efficiency, the capacity to resolve singular Jacobian matrix and real-time predictive performance. To overcome those deficiencies, this work proposes a hybrid strategy for forward kinematics in the Stewart platform based on dual quaternion neural network and ARMA time series prediction. This method initially employs a dual-quaternion-based back-propagation neural network (DQ-BPNN). The DQ-BPNN is partitioned into real and dual parts, composed of parameters such as driving-rod lengths, maximum and minimum lengths, to extract more features. In DQ-BPNN, a residual network (ResNet) is employed, endowing DQ-BPNN with the capacity to capture deeper-level system characteristics and enabling DQ-BPNN to achieve a better fitting effect. Furthermore, the combined modified multi-step-size factor Newton downhill method and the Newton–Raphson method (C-MSFND-NR) are employed. This combination not only enhances computational efficiency and ensures global convergence, but also endows the method with the capability to resolve a singular matrix. Finally, a traversal method is adopted to determine the order of the autoregressive moving average (ARMA) model according to the Bayesian information criterion (BIC). This approach efficiently balances computational efficiency and fitting accuracy during real-time motion. The simulations and experiments demonstrate that, compared with BPNN, the R2 value in DQ-BPNN increases by 0.1%. Meanwhile, the MAE, MAPE, RMSE, and MSE values in DQ-BPNN decrease by 8.89%, 21.85%, 6.90%, and 3.3%, respectively. Compared with five Newtonian methods, the average computing time of C-MSFND-NR decreases by 59.82%, 83.81%, 15.09%, 79.82%, and 78.77%. Compared with the linear method, the prediction accuracy of the ARMA method increases by 14.63%, 14.63%, 14.63%, 14.46%, 16.67%, and 13.41%, respectively. 
653 |a Kinematics 
653 |a Accuracy 
653 |a Artificial neural networks 
653 |a Optimization 
653 |a Back propagation networks 
653 |a Newton-Raphson method 
653 |a Jacobi matrix method 
653 |a Numerical analysis 
653 |a Autoregressive moving average 
653 |a Algebra 
653 |a Systems stability 
653 |a Time series 
653 |a Efficiency 
653 |a Coordinate transformations 
653 |a Neural networks 
653 |a Sensors 
653 |a Computational efficiency 
653 |a Methods 
653 |a Algorithms 
653 |a Real time 
653 |a Quaternions 
653 |a Computing time 
653 |a Jacobian matrix 
700 1 |a Zhou Huicheng  |u School of Mechanical Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; taojie@hust.edu.cn 
700 1 |a Fan, Wei  |u Sichuan Precision and Ultra-Precision Machining Engineering Technology Center, Chengdu 610200, China 
773 0 |t Actuators  |g vol. 14, no. 4 (2025), p. 159 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194472239/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194472239/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194472239/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch