Definer: A computational method for accurate identification of RNA pseudouridine sites based on deep learning

Bewaard in:
Bibliografische gegevens
Gepubliceerd in:PLoS One vol. 20, no. 4 (Apr 2025), p. e0320077
Hoofdauteur: Han, Bo
Andere auteurs: Bai, Sudan, Liu, Yang, Wu, Jiezhang, Feng, Xin, Ruihao Xin
Gepubliceerd in:
Public Library of Science
Onderwerpen:
Online toegang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Voeg label toe
Geen labels, Wees de eerste die dit record labelt!

MARC

LEADER 00000nab a2200000uu 4500
001 3194483916
003 UK-CbPIL
022 |a 1932-6203 
024 7 |a 10.1371/journal.pone.0320077  |2 doi 
035 |a 3194483916 
045 2 |b d20250401  |b d20250430 
084 |a 174835  |2 nlm 
100 1 |a Han, Bo 
245 1 |a Definer: A computational method for accurate identification of RNA pseudouridine sites based on deep learning 
260 |b Public Library of Science  |c Apr 2025 
513 |a Journal Article 
520 3 |a Pseudouridine is an important modification site, which is widely present in a variety of non-coding RNAs and is involved in a variety of important biological processes. Studies have shown that pseudouridine is important in many biological functions such as gene expression, RNA structural stability, and various diseases. Therefore, accurate identification of pseudouridine sites can effectively explain the functional mechanism of this modification site. Due to the rapid increase of genomics data, traditional biological experimental methods to identify RNA modification sites can no longer meet the practical needs, and it is necessary to accurately identify pseudouridine sites from high-throughput RNA sequence data by computational methods. In this study, we propose a deep learning-based computational method, Definer, to accurately identify RNA pseudouridine loci in three species, Homo sapiens, Saccharomyces cerevisiae and Mus musculus. The method incorporates two sequence coding schemes, including NCP and One-hot, and then feeds the extracted RNA sequence features into a deep learning model constructed from CNN, GRU and Attention. The benchmark dataset contains data from three species, H. sapiens, S. cerevisiae and M. musculus, and the results using 10-fold cross-validation show that Definer significantly outperforms other existing methods. Meanwhile, the data sets of two species, H. sapiens and S. cerevisiae, were tested independently to further demonstrate the predictive ability of the model. In summary, our method, Definer, can accurately identify pseudouridine modification sites in RNA. 
653 |a Machine learning 
653 |a Software 
653 |a Deep learning 
653 |a Datasets 
653 |a Experimental methods 
653 |a Hydrogen bonds 
653 |a Identification methods 
653 |a Gene expression 
653 |a Ribonucleic acid--RNA 
653 |a Neural networks 
653 |a Feature selection 
653 |a Computer applications 
653 |a Algorithms 
653 |a Yeast 
653 |a Nucleotide sequence 
653 |a Biological activity 
653 |a Performance evaluation 
653 |a RNA modification 
653 |a Structural stability 
653 |a Saccharomyces cerevisiae 
653 |a Environmental 
700 1 |a Bai, Sudan 
700 1 |a Liu, Yang 
700 1 |a Wu, Jiezhang 
700 1 |a Feng, Xin 
700 1 |a Ruihao Xin 
773 0 |t PLoS One  |g vol. 20, no. 4 (Apr 2025), p. e0320077 
786 0 |d ProQuest  |t Health & Medical Collection 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194483916/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3194483916/fulltext/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194483916/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch