High-Performance Computing and Parallel Algorithms for Urban Water Demand Forecasting

Guardado en:
Detalles Bibliográficos
Publicado en:Algorithms vol. 18, no. 4 (2025), p. 182
Autor principal: Myllis Georgios
Otros Autores: Tsimpiris Alkiviadis, Aggelopoulos Stamatios, Vrana, Vasiliki G
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194484919
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18040182  |2 doi 
035 |a 3194484919 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Myllis Georgios  |u Department of Computer Informatics and Telecommunications Engineering, International Hellenic University, 621 24 Serres, Greece; geormyll@ihu.gr 
245 1 |a High-Performance Computing and Parallel Algorithms for Urban Water Demand Forecasting 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper explores the application of parallel algorithms and high-performance computing (HPC) in the processing and forecasting of large-scale water demand data. Building upon prior work, which identified the need for more robust and scalable forecasting models, this study integrates parallel computing frameworks such as Apache Spark for distributed data processing, Message Passing Interface (MPI) for fine-grained parallel execution, and CUDA-enabled GPUs for deep learning acceleration. These advancements significantly improve model training and deployment speed, enabling near-real-time data processing. Apache Spark’s in-memory computing and distributed data handling optimize data preprocessing and model execution, while MPI provides enhanced control over custom parallel algorithms, ensuring high performance in complex simulations. By leveraging these techniques, urban water utilities can implement scalable, efficient, and reliable forecasting solutions critical for sustainable water resource management in increasingly complex environments. Additionally, expanding these models to larger datasets and diverse regional contexts will be essential for validating their robustness and applicability in different urban settings. Addressing these challenges will help bridge the gap between theoretical advancements and practical implementation, ensuring that HPC-driven forecasting models provide actionable insights for real-world water management decision-making. 
653 |a Machine learning 
653 |a Forecasting techniques 
653 |a Accuracy 
653 |a Water demand 
653 |a Message passing 
653 |a Urban environments 
653 |a Water resources management 
653 |a Data processing 
653 |a Datasets 
653 |a Deep learning 
653 |a Forecasting 
653 |a Water management 
653 |a Water 
653 |a Algorithms 
653 |a Real time 
653 |a Distributed memory 
653 |a Water utilities 
653 |a High performance computing 
653 |a Efficiency 
653 |a Distributed processing 
700 1 |a Tsimpiris Alkiviadis  |u Department of Computer Informatics and Telecommunications Engineering, International Hellenic University, 621 24 Serres, Greece; geormyll@ihu.gr 
700 1 |a Aggelopoulos Stamatios  |u Department of Agriculture, International Hellenic University, Thessaloniki, 570 01 Nea Moudania, Greece; saggelopoulos@ihu.gr 
700 1 |a Vrana, Vasiliki G  |u Department of Business Administration, International Hellenic University, 621 24 Serres, Greece 
773 0 |t Algorithms  |g vol. 18, no. 4 (2025), p. 182 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194484919/abstract/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194484919/fulltextwithgraphics/embedded/Y2VX53961LHR7RE6?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194484919/fulltextPDF/embedded/Y2VX53961LHR7RE6?source=fedsrch