Wavelet-Based Optimization and Numerical Computing for Fault Detection Method—Signal Fault Localization and Classification Algorithm

Сохранить в:
Библиографические подробности
Опубликовано в::Algorithms vol. 18, no. 4 (2025), p. 217
Главный автор: Sakovich Nikita
Другие авторы: Aksenov Dmitry, Pleshakova Ekaterina, Gataullin Sergey
Опубликовано:
MDPI AG
Предметы:
Online-ссылка:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Метки: Добавить метку
Нет меток, Требуется 1-ая метка записи!

MARC

LEADER 00000nab a2200000uu 4500
001 3194485112
003 UK-CbPIL
022 |a 1999-4893 
024 7 |a 10.3390/a18040217  |2 doi 
035 |a 3194485112 
045 2 |b d20250101  |b d20251231 
084 |a 231333  |2 nlm 
100 1 |a Sakovich Nikita  |u Financial University under the Government of the Russian Federation, Moscow 109456, Russia; 217556@edu.fa.ru (N.S.); daaksenov@fa.ru (D.A.) 
245 1 |a Wavelet-Based Optimization and Numerical Computing for Fault Detection Method—Signal Fault Localization and Classification Algorithm 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This study focuses on the development of the WONC-FD (Wavelet-Based Optimization and Numerical Computing for Fault Detection) algorithm for the accurate detection and categorization of faults in signals using wavelet analysis augmented with numerical methods. Fault detection is a key problem in areas related to seismic activity analysis, vibration assessment of industrial equipment, structural integrity control, and electrical grid reliability. In the proposed methodology, wavelet transform serves to accurately localize anomalies in the data, and optimization techniques are introduced to refine the classification based on minimizing the error function. This not only improves the accuracy of fault identification but also provides a better understanding of its nature. 
653 |a Industrial equipment 
653 |a Accuracy 
653 |a Computation 
653 |a Classification 
653 |a Wavelet transforms 
653 |a Fault lines 
653 |a Fault location 
653 |a Optimization techniques 
653 |a Signal processing 
653 |a Error functions 
653 |a Adaptation 
653 |a Decomposition 
653 |a Numerical analysis 
653 |a Data analysis 
653 |a Localization 
653 |a Fault detection 
653 |a Numerical methods 
653 |a Data compression 
653 |a Wavelet analysis 
653 |a Internet of Things 
653 |a Seismic activity 
653 |a Machine learning 
653 |a Fourier transforms 
653 |a Fault diagnosis 
653 |a Failure analysis 
653 |a Structural integrity 
653 |a Neural networks 
653 |a Optimization 
653 |a Flexibility 
653 |a Algorithms 
653 |a Vibration analysis 
653 |a Methods 
700 1 |a Aksenov Dmitry  |u Financial University under the Government of the Russian Federation, Moscow 109456, Russia; 217556@edu.fa.ru (N.S.); daaksenov@fa.ru (D.A.) 
700 1 |a Pleshakova Ekaterina  |u MIREA—Russian Technological University, 78 Vernadsky Avenue, Moscow 119454, Russia 
700 1 |a Gataullin Sergey  |u Central Economics and Mathematics Institute of the Russian Academy of Sciences, Nakhimovsky Prospect, 47, Moscow 117418, Russia; sgataullin@cemi-ras.ru 
773 0 |t Algorithms  |g vol. 18, no. 4 (2025), p. 217 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194485112/abstract/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194485112/fulltextwithgraphics/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194485112/fulltextPDF/embedded/Q8Z64E4HU3OH5N8U?source=fedsrch