Water Quality Monitoring: A Water Quality Dataset from an On-Site Study in Macao

Gardado en:
Detalles Bibliográficos
Publicado en:Applied Sciences vol. 15, no. 8 (2025), p. 4130
Autor Principal: Gao Jiawei
Outros autores: Chen, Bochao, Su-Kit, Tang
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194488541
003 UK-CbPIL
022 |a 2076-3417 
024 7 |a 10.3390/app15084130  |2 doi 
035 |a 3194488541 
045 2 |b d20250101  |b d20251231 
084 |a 231338  |2 nlm 
100 1 |a Gao Jiawei 
245 1 |a Water Quality Monitoring: A Water Quality Dataset from an On-Site Study in Macao 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The Building Safe Water Use Plan promoted by the Macao Marine and Water Bureau aims to encourage property management entities to regularly maintain building water supply systems to ensure the safety and stability of drinking water. However, traditional laboratory testing methods are often time-consuming and labor-intensive, making real-time and efficient water quality monitoring challenging. To address this issue, this study proposes a Raspberry Pi-based multi-sensor system for rapid water quality detection and improved monitoring efficiency. This system integrates multiple sensors to measure key water quality parameters, such as pH, total dissolved solids (TDSs), temperature, and turbidity, while recording data in real-time. The data were continuously collected over a period of five months (July to November 2024). The collected data were analyzed and validated using machine learning algorithms, including Isolation Forest, Random Forest, Logistic Regression, and Local Outlier Factor. Among these models, Random Forest exhibited the best overall performance, achieving an accuracy of 98.10% and an F1 score of 98.99%. These results show that the dataset demonstrates high reliability in anomaly detection and classification tasks, accurately identifying deviations in water quality. This approach not only enhances the efficiency of water quality monitoring but also provides technological support for urban drinking water safety management. 
610 4 |a Environmental Protection Agency--EPA World Health Organization Raspberry Pi Ltd 
651 4 |a Macao 
651 4 |a United States--US 
651 4 |a China 
653 |a Pollutants 
653 |a Accuracy 
653 |a Datasets 
653 |a Water supply 
653 |a Water shortages 
653 |a Buildings 
653 |a Data processing 
653 |a Drinking water 
653 |a Property management 
653 |a Water quality 
653 |a Water conservation 
653 |a Costs 
653 |a Antibiotics 
653 |a Water resources 
653 |a Sensors 
653 |a Heavy metals 
653 |a Data collection 
653 |a High rise buildings 
653 |a Environmental protection 
653 |a Plastic pollution 
653 |a Machine learning 
700 1 |a Chen, Bochao 
700 1 |a Su-Kit, Tang 
773 0 |t Applied Sciences  |g vol. 15, no. 8 (2025), p. 4130 
786 0 |d ProQuest  |t Publicly Available Content Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194488541/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194488541/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194488541/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch