Simulation-Based Evaluation of Robust Transformation Techniques for Median Estimation Under Simple Random Sampling

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 4 (2025), p. 301
Autor principal: Almulhim, Fatimah A
Otros Autores: Alghamdi, Abdulaziz S
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194490169
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14040301  |2 doi 
035 |a 3194490169 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Almulhim, Fatimah A  |u Department of Mathematical Sciences, College of Science, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia 
245 1 |a Simulation-Based Evaluation of Robust Transformation Techniques for Median Estimation Under Simple Random Sampling 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a An efficient estimator can reduce both bias and mean squared error to provide more accurate results by using the transformation strategy. In this paper, an enhanced class of ratio–product types of estimators is introduced, which employs the transformation technique by linearly combining two robust measures, the trimean and decile mean, and five non-conventional measures, the range, inter-quartile range, mid-range, quartile average, and quartile deviation, on auxiliary variables with a simple random sampling method to estimate the finite population median. This transformation approach improves efficiency and enables estimators to manage data variability better. Using these estimators, we investigate their bias and mean squared error up to the first order of approximation. A comparison of the proposed estimators and existing methods is conducted through five simulated populations generated through different suitable distributions and three real datasets. By improving the precision and efficiency of median estimation, the proposed estimators ensure accurate and reliable results. Comparing the new estimators to traditional estimators, the findings show superior performance for new estimators in terms of mean squared errors (MSEs). 
653 |a Accuracy 
653 |a Bias 
653 |a Datasets 
653 |a Mean 
653 |a Sampling techniques 
653 |a Sampling methods 
653 |a Environmental research 
653 |a Random variables 
653 |a Variables 
653 |a Methods 
653 |a Estimators 
653 |a Median (statistics) 
653 |a Environmental monitoring 
653 |a Random sampling 
653 |a Climate change 
653 |a Social sciences 
653 |a Robustness 
653 |a Clinical outcomes 
653 |a Quartiles 
700 1 |a Alghamdi, Abdulaziz S  |u Department of Mathematics, College of Science & Arts, King Abdulaziz University, P.O. Box 344, Rabigh 21911, Saudi Arabia 
773 0 |t Axioms  |g vol. 14, no. 4 (2025), p. 301 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194490169/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194490169/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194490169/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch