Semantic-Driven Approach for Validation of IoT Streaming Data in Trustable Smart City Decision-Making and Monitoring Systems

Guardado en:
Detalles Bibliográficos
Publicado en:Big Data and Cognitive Computing vol. 9, no. 4 (2025), p. 108
Autor principal: Bamgboye Oluwaseun
Otros Autores: Liu, Xiaodong, Cruickshank, Peter, Liu, Qi
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194490174
003 UK-CbPIL
022 |a 2504-2289 
024 7 |a 10.3390/bdcc9040108  |2 doi 
035 |a 3194490174 
045 2 |b d20250101  |b d20251231 
100 1 |a Bamgboye Oluwaseun  |u School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK; p.cruickshank@napier.ac.uk 
245 1 |a Semantic-Driven Approach for Validation of IoT Streaming Data in Trustable Smart City Decision-Making and Monitoring Systems 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Ensuring the trustworthiness of data used in real-time analytics remains a critical challenge in smart city monitoring and decision-making. This is because the traditional data validation methods are insufficient for handling the dynamic and heterogeneous nature of Internet of Things (IoT) data streams. This paper describes a semantic IoT streaming data validation approach to provide a semantic IoT data model and process IoT streaming data with the semantic stream processing systems to check the quality requirements of IoT streams. The proposed approach enhances the understanding of smart city data while supporting real-time, data-driven decision-making and monitoring processes. A publicly available sensor dataset collected from a busy road in Milan city is constructed, annotated and semantically processed by the proposed approach and its architecture. The architecture, built on a robust semantic-based system, incorporates a reasoning technique based on forward rules, which is integrated within the semantic stream query processing system. It employs serialized Resource Description Framework (RDF) data formats to enhance stream expressiveness and enables the real-time validation of missing and inconsistent data streams within continuous sliding-window operations. The effectiveness of the approach is validated by deploying multiple RDF stream instances to the architecture before evaluating its accuracy and performance (in terms of reasoning time). The approach underscores the capability of semantic technology in sustaining the validation of IoT streaming data by accurately identifying up to 99% of inconsistent and incomplete streams in each streaming window. Also, it can maintain the performance of the semantic reasoning process in near real time. The approach provides an enhancement to data quality and credibility, capable of providing near-real-time decision support mechanisms for critical smart city applications, and facilitates accurate situational awareness across both the application and operational levels of the smart city. 
653 |a Accuracy 
653 |a Technological change 
653 |a Interoperability 
653 |a Internet of Things 
653 |a Ontology 
653 |a Data transmission 
653 |a Information sharing 
653 |a Automation 
653 |a Monitoring 
653 |a Decision making 
653 |a Monitoring systems 
653 |a Innovations 
653 |a Smart cities 
653 |a Quality of life 
653 |a Semantics 
653 |a Artificial intelligence 
653 |a Sensors 
653 |a Reasoning 
653 |a Situational awareness 
653 |a Trust 
653 |a Resource Description Framework-RDF 
653 |a Real time 
653 |a Query processing 
700 1 |a Liu, Xiaodong  |u School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK; p.cruickshank@napier.ac.uk 
700 1 |a Cruickshank, Peter  |u School of Computing, Engineering and Built Environment, Edinburgh Napier University, Edinburgh EH10 5DT, UK; p.cruickshank@napier.ac.uk 
700 1 |a Liu, Qi  |u School of Computer and Software, Nanjing University of Information Science and Technology, Nanjing 210044, China; qi.liu@nuist.edu.cn 
773 0 |t Big Data and Cognitive Computing  |g vol. 9, no. 4 (2025), p. 108 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194490174/abstract/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194490174/fulltextwithgraphics/embedded/6A8EOT78XXH2IG52?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194490174/fulltextPDF/embedded/6A8EOT78XXH2IG52?source=fedsrch