Flexible and Efficient Iterative Solutions for General Variational Inequalities in Real Hilbert Spaces

Guardado en:
Detalles Bibliográficos
Publicado en:Axioms vol. 14, no. 4 (2025), p. 288
Autor principal: Hacıoğlu Emirhan
Otros Autores: Ertürk Müzeyyen, Faik, Gürsoy, Milovanović Gradimir V.
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194490183
003 UK-CbPIL
022 |a 2075-1680 
024 7 |a 10.3390/axioms14040288  |2 doi 
035 |a 3194490183 
045 2 |b d20250101  |b d20251231 
084 |a 231430  |2 nlm 
100 1 |a Hacıoğlu Emirhan  |u Department of Mathematics, Trakya University, 22030 Edirne, Türkiye; emirhanhacioglu@trakya.edu.tr 
245 1 |a Flexible and Efficient Iterative Solutions for General Variational Inequalities in Real Hilbert Spaces 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper introduces a novel Picard-type iterative algorithm for solving general variational inequalities in real Hilbert spaces. The proposed algorithm enhances both the theoretical framework and practical applicability of iterative algorithms by relaxing restrictive conditions on parametric sequences, thereby expanding their scope of use. We establish convergence results, including a convergence equivalence with a previous algorithm, highlighting the theoretical relationship while demonstrating the increased flexibility and efficiency of the new approach. The paper also addresses gaps in the existing literature by offering new theoretical insights into the transformations associated with variational inequalities and the continuity of their solutions, thus paving the way for future research. The theoretical advancements are complemented by practical applications, such as the adaptation of the algorithm to convex optimization problems and its use in real-world contexts like machine learning. Numerical experiments confirm the proposed algorithm’s versatility and efficiency, showing superior performance and faster convergence compared to an existing method. 
653 |a Iterative algorithms 
653 |a Convergence 
653 |a Inequalities 
653 |a Algorithms 
653 |a Machine learning 
653 |a Hilbert space 
653 |a Convexity 
653 |a Iterative solution 
653 |a Optimization 
700 1 |a Ertürk Müzeyyen  |u Department of Mathematics, Adiyaman University, 02040 Adiyaman, Türkiye; merturk@adiyaman.edu.tr (M.E.); fgursoy@adiyaman.edu.tr (F.G.) 
700 1 |a Faik, Gürsoy  |u Department of Mathematics, Adiyaman University, 02040 Adiyaman, Türkiye; merturk@adiyaman.edu.tr (M.E.); fgursoy@adiyaman.edu.tr (F.G.) 
700 1 |a Milovanović Gradimir V.  |u Serbian Academy of Sciences and Arts, 11000 Belgrade, Serbia 
773 0 |t Axioms  |g vol. 14, no. 4 (2025), p. 288 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194490183/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194490183/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194490183/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch