Deep Learning-Based Estimation of Myocardial Material Parameters from Cardiac MRI

-д хадгалсан:
Номзүйн дэлгэрэнгүй
-д хэвлэсэн:Bioengineering vol. 12, no. 4 (2025), p. 433
Үндсэн зохиолч: Chen, Yunhe
Бусад зохиолчид: Zhang, Xiwen, Huo Yongzhong, Wang, Shuo
Хэвлэсэн:
MDPI AG
Нөхцлүүд:
Онлайн хандалт:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Шошгууд: Шошго нэмэх
Шошго байхгүй, Энэхүү баримтыг шошголох эхний хүн болох!

MARC

LEADER 00000nab a2200000uu 4500
001 3194492259
003 UK-CbPIL
022 |a 2306-5354 
024 7 |a 10.3390/bioengineering12040433  |2 doi 
035 |a 3194492259 
045 2 |b d20250101  |b d20251231 
100 1 |a Chen, Yunhe  |u Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; yunhechen23@m.fudan.edu.cn 
245 1 |a Deep Learning-Based Estimation of Myocardial Material Parameters from Cardiac MRI 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Background: Accurate estimation of myocardial material parameters is crucial to understand cardiac biomechanics and plays a key role in advancing computational modeling and clinical applications. Traditional inverse finite element (FE) methods rely on iterative optimization to infer these parameters, which is computationally expensive and time-consuming, limiting their clinical applicability. Methods: This study proposes a deep learning-based approach to rapidly and accurately estimate the left ventricular myocardial material parameters directly from routine cardiac magnetic resonance imaging (CMRI) data. A ResNet18-based model was trained on FEM-derived parameters from a dataset of 1288 healthy subjects. Results: The proposed model demonstrated high predictive accuracy on healthy subjects, achieving mean absolute errors of 0.0146 for <inline-formula>Ca</inline-formula> and 0.0139 for <inline-formula>Cb</inline-formula>, with mean relative errors below 5.00%. Additionally, we evaluated the model on a small pathological subset (including ARV and HCM cases). The results revealed that while the model maintained strong performance on healthy data, the prediction errors in the pathological samples were higher, indicating increased challenges in modeling diseased myocardial tissue. Conclusion: This study establishes a computationally efficient and accurate deep learning framework for estimating myocardial material parameters, eliminating the need for time-consuming iterative FE optimization. While the model shows promising performance on healthy subjects, further validation and refinement are required to address its limitations in pathological conditions, thereby paving the way for personalized cardiac modeling and improved clinical decision-making. 
651 4 |a United States--US 
653 |a Machine learning 
653 |a Biomechanics 
653 |a Magnetic resonance imaging 
653 |a Datasets 
653 |a Deep learning 
653 |a Heart 
653 |a Iterative methods 
653 |a Optimization 
653 |a Neural networks 
653 |a Mathematical models 
653 |a Errors 
653 |a Stress analysis 
653 |a Parameters 
653 |a Decision making 
653 |a Estimation 
653 |a Business metrics 
653 |a Parameter estimation 
700 1 |a Zhang, Xiwen  |u Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; 20307110438@fudan.edu.cn 
700 1 |a Huo Yongzhong  |u Department of Aeronautics and Astronautics, Fudan University, Shanghai 200433, China; yunhechen23@m.fudan.edu.cn 
700 1 |a Wang, Shuo  |u Digital Medical Research Center, School of Basic Medical Sciences, Fudan University, Shanghai 200032, China; 20307110438@fudan.edu.cn 
773 0 |t Bioengineering  |g vol. 12, no. 4 (2025), p. 433 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194492259/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194492259/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194492259/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch