Day-Ahead Optimal Scheduling for a Full-Scale PV–Energy Storage Microgrid: From Simulation to Experimental Validation

Guardat en:
Dades bibliogràfiques
Publicat a:Electronics vol. 14, no. 8 (2025), p. 1509
Autor principal: Wang, Zixuan
Altres autors: Shi Libao
Publicat:
MDPI AG
Matèries:
Accés en línia:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetes: Afegir etiqueta
Sense etiquetes, Sigues el primer a etiquetar aquest registre!

MARC

LEADER 00000nab a2200000uu 4500
001 3194571311
003 UK-CbPIL
022 |a 2079-9292 
024 7 |a 10.3390/electronics14081509  |2 doi 
035 |a 3194571311 
045 2 |b d20250101  |b d20251231 
084 |a 231458  |2 nlm 
100 1 |a Wang, Zixuan 
245 1 |a Day-Ahead Optimal Scheduling for a Full-Scale PV–Energy Storage Microgrid: From Simulation to Experimental Validation 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Microgrids facilitate the complementary and collaborative operation of various distributed energy resources. Implementing effective day-ahead scheduling strategies can significantly enhance the economic efficiency and operational stability of microgrid systems. In this study, the long short-term memory (LSTM) neural network is first employed to forecast photovoltaic (PV) power generation and load demand, using operational data from a full-scale microgrid system. Subsequently, an optimization model for a full-scale PV–energy storage microgrid is developed, integrating a PV power generation system, a battery energy storage system, and a specific industrial load. The model aims to minimize the total daily operating cost of the system while satisfying a set of system operational constraints, with particular emphasis on the safety requirements for grid exchange power. The formulated optimization problem is then transformed into a mixed-integer linear programming (MILP) model, which is solved using a computational solver to derive the day-ahead economic scheduling scheme. Finally, the proposed scheduling scheme is validated through field experiments conducted on the full-scale PV–energy storage microgrid system across various operational scenarios. By comparing the simulation results with the experimental outcomes, the effectiveness and practicality of the proposed day-ahead economic scheduling scheme for the microgrid are demonstrated. 
653 |a Linear programming 
653 |a Electrical loads 
653 |a Distributed generation 
653 |a Energy sources 
653 |a Integer programming 
653 |a Optimization 
653 |a Solar power generation 
653 |a Batteries 
653 |a Energy storage 
653 |a Energy resources 
653 |a Energy consumption 
653 |a Photovoltaic cells 
653 |a Optimization models 
653 |a Mathematical programming 
653 |a Scheduling 
653 |a Simulation 
653 |a Dynamic programming 
653 |a Solar energy 
653 |a Neural networks 
653 |a Electricity 
653 |a Renewable resources 
653 |a Effectiveness 
653 |a Resource scheduling 
653 |a Algorithms 
653 |a Mixed integer 
653 |a Alternative energy sources 
653 |a Operating costs 
700 1 |a Shi Libao 
773 0 |t Electronics  |g vol. 14, no. 8 (2025), p. 1509 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194571311/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194571311/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194571311/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch