Semantic Arithmetic Coding Using Synonymous Mappings

Salvato in:
Dettagli Bibliografici
Pubblicato in:Entropy vol. 27, no. 4 (2025), p. 429
Autore principale: Liang Zijian
Altri autori: Niu Kai, Xu, Jin, Zhang, Ping
Pubblicazione:
MDPI AG
Soggetti:
Accesso online:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Aggiungi Tag
Nessun Tag, puoi essere il primo ad aggiungerne!!

MARC

LEADER 00000nab a2200000uu 4500
001 3194594155
003 UK-CbPIL
022 |a 1099-4300 
024 7 |a 10.3390/e27040429  |2 doi 
035 |a 3194594155 
045 2 |b d20250101  |b d20251231 
084 |a 231460  |2 nlm 
100 1 |a Liang Zijian  |u Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China; liang1060279345@bupt.edu.cn (Z.L.); xujinbupt@bupt.edu.cn (J.X.) 
245 1 |a Semantic Arithmetic Coding Using Synonymous Mappings 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recent semantic communication methods explore effective ways to expand the communication paradigm and improve the performance of communication systems. Nonetheless, a common problem with these methods is that the essence of semantics is not explicitly pointed out and directly utilized. A new epistemology suggests that synonymity, which is revealed as the fundamental feature of semantics, guides the establishment of semantic information theory from a novel viewpoint. Building on this theoretical basis, this paper proposes a semantic arithmetic coding (SAC) method for semantic lossless compression using intuitive synonymity. By constructing reasonable synonymous mappings and performing arithmetic coding procedures over synonymous sets, SAC can achieve higher compression efficiency for meaning-contained source sequences at the semantic level and approximate the semantic entropy limits. Experimental results on edge texture map compression show a significant improvement in coding efficiency using SAC without semantic losses compared to traditional arithmetic coding, demonstrating its effectiveness. 
653 |a Semantics 
653 |a Communication 
653 |a Neural networks 
653 |a Effectiveness 
653 |a Communications systems 
653 |a Information processing 
653 |a Arithmetic coding 
653 |a Epistemology 
653 |a Codes 
653 |a Algorithms 
653 |a Information theory 
653 |a Texture mapping 
653 |a Entropy 
653 |a Efficiency 
700 1 |a Niu Kai  |u Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China; liang1060279345@bupt.edu.cn (Z.L.); xujinbupt@bupt.edu.cn (J.X.) 
700 1 |a Xu, Jin  |u Key Laboratory of Universal Wireless Communications, Ministry of Education, Beijing University of Posts and Telecommunications, Beijing 100876, China; liang1060279345@bupt.edu.cn (Z.L.); xujinbupt@bupt.edu.cn (J.X.) 
700 1 |a Zhang, Ping  |u State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and Telecommunications, Beijing 100876, China; pzhang@bupt.edu.cn 
773 0 |t Entropy  |g vol. 27, no. 4 (2025), p. 429 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194594155/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194594155/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194594155/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch