Balancing Prediction Accuracy and Explanation Power of Path Loss Modeling in a University Campus Environment via Explainable AI

Enregistré dans:
Détails bibliographiques
Publié dans:Future Internet vol. 17, no. 4 (2025), p. 155
Auteur principal: Khalili Hamed
Autres auteurs: Frey, Hannes, Wimmer, Maria A
Publié:
MDPI AG
Sujets:
Accès en ligne:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Ajouter un tag
Pas de tags, Soyez le premier à ajouter un tag!

MARC

LEADER 00000nab a2200000uu 4500
001 3194606931
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17040155  |2 doi 
035 |a 3194606931 
045 2 |b d20250401  |b d20250430 
084 |a 231464  |2 nlm 
100 1 |a Khalili Hamed  |u Research Group Computer Networks, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany; frey@uni-koblenz.de 
245 1 |a Balancing Prediction Accuracy and Explanation Power of Path Loss Modeling in a University Campus Environment via Explainable AI 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a For efficient radio network planning, empirical path loss (PL) prediction models are utilized to predict signal attenuation in different environments. Alternatively, machine learning (ML) models are proposed to predict path loss. While empirical models are transparent and require less computational capacity, their predictions are not able to generate accurate forecasting in complex environments. While ML models are precise and can cope with complex terrains, their opaque nature hampers building trust and relying assertively on their predictions. To fill the gap between transparency and accuracy, in this paper, we utilize glass box ML using Microsoft research’s explainable boosting machines (EBM) together with the PL data measured for a university campus environment. Moreover, polar coordinate transformation is applied in our paper, which unravels the superior explanation capacity of the feature transmitting angle beyond the feature distance. PL predictions of glass box ML are compared with predictions of black box ML models as well as those generated by empirical models. The glass box EBM exhibits the highest performance. The glass box ML, furthermore, sheds light on the important explanatory features and the magnitude of their effects on signal attenuation in the underlying propagation environment. 
610 4 |a Covenant University 
653 |a Accuracy 
653 |a Machine learning 
653 |a Artificial intelligence 
653 |a Attenuation 
653 |a Communication 
653 |a Prediction models 
653 |a College campuses 
653 |a Coordinate transformations 
653 |a Polar coordinates 
653 |a Literature reviews 
653 |a Explainable artificial intelligence 
653 |a Colleges & universities 
700 1 |a Frey, Hannes  |u Research Group Computer Networks, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany; frey@uni-koblenz.de 
700 1 |a Wimmer, Maria A  |u Research Group E-Government, Faculty of Computer Science, University of Koblenz, D-56070 Koblenz, Germany; wimmer@uni-koblenz.de 
773 0 |t Future Internet  |g vol. 17, no. 4 (2025), p. 155 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194606931/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194606931/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194606931/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch