AI-MDD-UX: Revolutionizing E-Commerce User Experience with Generative AI and Model-Driven Development

Guardado en:
Detalles Bibliográficos
Publicado en:Future Internet vol. 17, no. 4 (2025), p. 180
Autor principal: Alti Adel
Otros Autores: Lakehal Abderrahim
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194607004
003 UK-CbPIL
022 |a 1999-5903 
024 7 |a 10.3390/fi17040180  |2 doi 
035 |a 3194607004 
045 2 |b d20250101  |b d20251231 
084 |a 231464  |2 nlm 
100 1 |a Alti Adel  |u LRSD Laboratory, Faculty of Sciences, Computer Science Department, University Ferhat Abbas Sétif-1, Sétif P.O. Box 19000, Algeria; abderrahim.lakehal@univ-setif.dz 
245 1 |a AI-MDD-UX: Revolutionizing E-Commerce User Experience with Generative AI and Model-Driven Development 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a E-commerce applications have emerged as key drivers of digital transformation, reshaping consumer behavior and driving demand for seamless online transactions. Despite the growth of smart mobile technologies, existing methods rely on fixed UI content that cannot adjust to local cultural preferences and fluctuating user behaviors. This paper explores the combination of generative Artificial Intelligence (AI) technologies with Model-Driven Development (MDD) to enhance personalization, engagement, and adaptability in e-commerce. Unlike static adaptation approaches, generative AI enables real-time, adaptive interactions tailored to individual needs, providing a more engaging and adaptable user experience. The proposed framework follows a three-tier architecture: first, it collects and analyzes user behavior data from UI interactions; second, it leverages MDD to model and personalize user personas and interactions and third, AI techniques, including generative AI and multi-agent reinforcement learning, are applied to refine and optimize UI/UX design. This automation-driven approach uses a multi-agent system to continuously enhance AI-generated layouts. Technical validation demonstrated strong user engagement across diverse platforms and superior performance in UI optimization, achieving an average user satisfaction improvement of 2.3% compared to GAN-based models, 18.6% compared to Bootstrap-based designs, and 11.8% compared to rule-based UI adaptation. These results highlight generative AI-driven MDD tools as a promising tool for e-commerce, enhancing engagement, personalization, and efficiency. 
653 |a User behavior 
653 |a Usability 
653 |a User experience 
653 |a Optimization techniques 
653 |a Generative artificial intelligence 
653 |a Adaptation 
653 |a User interfaces 
653 |a Automation 
653 |a Machine learning 
653 |a Electronic commerce 
653 |a User profiles 
653 |a User interface 
653 |a User needs 
653 |a User satisfaction 
653 |a User feedback 
653 |a Supply chain management 
653 |a Multiagent systems 
653 |a Algorithms 
653 |a Customization 
653 |a Real time 
653 |a Design optimization 
700 1 |a Lakehal Abderrahim  |u LRSD Laboratory, Faculty of Sciences, Computer Science Department, University Ferhat Abbas Sétif-1, Sétif P.O. Box 19000, Algeria; abderrahim.lakehal@univ-setif.dz 
773 0 |t Future Internet  |g vol. 17, no. 4 (2025), p. 180 
786 0 |d ProQuest  |t ABI/INFORM Global 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194607004/abstract/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194607004/fulltextwithgraphics/embedded/CH9WPLCLQHQD1J4S?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194607004/fulltextPDF/embedded/CH9WPLCLQHQD1J4S?source=fedsrch