Prediction of Citrus Leaf Water Content Based on Multi-Preprocessing Fusion and Improved 1-Dimensional Convolutional Neural Network

Gardado en:
Detalles Bibliográficos
Publicado en:Horticulturae vol. 11, no. 4 (2025), p. 413
Autor Principal: Dou Shiqing
Outros autores: Ren Xinze, Qi Xiangqian, Zhang, Wenjie, Mei Zhengmin, Song, Yaqin, Yang, Xiaoting
Publicado:
MDPI AG
Materias:
Acceso en liña:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Engadir etiqueta
Sen Etiquetas, Sexa o primeiro en etiquetar este rexistro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194612435
003 UK-CbPIL
022 |a 2311-7524 
024 7 |a 10.3390/horticulturae11040413  |2 doi 
035 |a 3194612435 
045 2 |b d20250101  |b d20251231 
100 1 |a Dou Shiqing  |u College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China; doushiqing@glut.edu.cn (S.D.); xz_r@glut.edu.cn (X.R.); 1020221955@glut.edu.cn (W.Z.); 2120242211@glut.edu.cn (X.Y.) 
245 1 |a Prediction of Citrus Leaf Water Content Based on Multi-Preprocessing Fusion and Improved 1-Dimensional Convolutional Neural Network 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The leaf water content (LWC) of citrus is a pivotal indicator for assessing citrus water status. Addressing the limitations of traditional hyperspectral modelling methods, which rely on single preprocessing techniques and struggle to fully exploit the complex information within spectra, this study proposes a novel strategy for estimating citrus LWC by integrating spectral preprocessing combinations with an enhanced deep learning architecture. Utilizing a citrus plantation in Guangxi as the experimental site, 240 leaf samples were collected. Seven preprocessing combinations were constructed based on multiplicative scatter correction (MSC), continuous wavelet transform (CWT), and first derivative (1st D), and a new multichannel network, EDPNet (Ensemble Data Preprocessing Network), was designed for modelling. Furthermore, this study incorporated an attention mechanism within EDPNet, comparing the applicability of SE Block, SAM, and CBAM in integrating spectral combination information. The experiments demonstrated that (1) the triple preprocessing combination (MSC + CWT + 1st D) significantly enhanced model performance, with the prediction set R² reaching 0.8036, a 13.86% improvement over single preprocessing methods, and the RMSE reduced to 2.3835; (2) EDPNet, through its multichannel parallel convolution and shallow structure design, avoids excessive network depth while effectively enhancing predictive performance, achieving a prediction accuracy (R2 = 0.8036) that was 5.58–9.21% higher than that of AlexNet, VGGNet, and LeNet-5, with the RMSE reduced by 9.35–14.65%; and (3) the introduction of the hybrid attention mechanism CBAM further optimized feature weight allocation, increasing the model’s R2 to 0.8430 and reducing the RMSE to 2.1311, with accuracy improvements of 2.08–2.36% over other attention modules (SE, SAM). This study provides a highly efficient and accurate new method for monitoring citrus water content, offering practical significance for intelligent orchard management and optimal resource allocation. 
651 4 |a China 
653 |a Resource allocation 
653 |a Accuracy 
653 |a Monitoring methods 
653 |a Deep learning 
653 |a Wavelet transforms 
653 |a Modelling 
653 |a Artificial neural networks 
653 |a Leaves 
653 |a Water 
653 |a Moisture content 
653 |a Fruits 
653 |a Performance evaluation 
653 |a Continuous wavelet transform 
653 |a Efficiency 
653 |a Water content 
653 |a Preprocessing 
653 |a Predictions 
653 |a Neural networks 
653 |a Trees 
653 |a Data collection 
653 |a Methods 
653 |a Environmental 
700 1 |a Ren Xinze  |u College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China; doushiqing@glut.edu.cn (S.D.); xz_r@glut.edu.cn (X.R.); 1020221955@glut.edu.cn (W.Z.); 2120242211@glut.edu.cn (X.Y.) 
700 1 |a Qi Xiangqian  |u School of Resource Engineering, Longyan University, Longyan 364012, China 
700 1 |a Zhang, Wenjie  |u College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China; doushiqing@glut.edu.cn (S.D.); xz_r@glut.edu.cn (X.R.); 1020221955@glut.edu.cn (W.Z.); 2120242211@glut.edu.cn (X.Y.) 
700 1 |a Mei Zhengmin  |u Guangxi Academy of Specialty Crops, Guilin 541004, China; mzm077@126.com (Z.M.); wrongpiano@163.com (Y.S.) 
700 1 |a Song, Yaqin  |u Guangxi Academy of Specialty Crops, Guilin 541004, China; mzm077@126.com (Z.M.); wrongpiano@163.com (Y.S.) 
700 1 |a Yang, Xiaoting  |u College of Geomatics and Geoinformation, Guilin University of Technology, Guilin 541006, China; doushiqing@glut.edu.cn (S.D.); xz_r@glut.edu.cn (X.R.); 1020221955@glut.edu.cn (W.Z.); 2120242211@glut.edu.cn (X.Y.) 
773 0 |t Horticulturae  |g vol. 11, no. 4 (2025), p. 413 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194612435/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194612435/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194612435/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch