Leveraging Recurrent Neural Networks for Flood Prediction and Assessment

Gespeichert in:
Bibliographische Detailangaben
Veröffentlicht in:Hydrology vol. 12, no. 4 (2025), p. 90
1. Verfasser: Heidari Elnaz
Weitere Verfasser: Samadi Vidya, Khan, Abdul A
Veröffentlicht:
MDPI AG
Schlagworte:
Online-Zugang:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Tags: Tag hinzufügen
Keine Tags, Fügen Sie das erste Tag hinzu!

MARC

LEADER 00000nab a2200000uu 4500
001 3194612621
003 UK-CbPIL
022 |a 2306-5338 
024 7 |a 10.3390/hydrology12040090  |2 doi 
035 |a 3194612621 
045 2 |b d20250101  |b d20251231 
100 1 |a Heidari Elnaz  |u The Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA; eheidar@clemson.edu 
245 1 |a Leveraging Recurrent Neural Networks for Flood Prediction and Assessment 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a Recent progress in Artificial Intelligence and Machine Learning (AIML) has accelerated improvements in the prediction performance of many hydrological processes. Yet, flood prediction remains a challenging task due to its complex nature. Two common challenges afflicting the task are flood volatility and the sensitivity and complexity of flood generation attributes. This study explores the application of Recurrent Neural Networks (RNNs)—specifically Vanilla Recurrent Neural Networks (VRNNs), Long Short-Term Memory (LSTM), and Gated Recurrent Unit (GRU)—in flood prediction and assessment. By integrating catchment-specific hydrological and meteorological variables, the RNN models leverage sequential data processing to capture the temporal dynamics and seasonal patterns characteristic of flooding. These models were employed across diverse terrains, including mountainous watersheds in the state of South Carolina, USA, to examine their robustness and adaptability. To identify significant hydrological events for flash flood analysis, a discharge frequency analysis was conducted using the Pearson Type III distribution. The 1-year and 2-year return period flows were estimated based on this analysis, and the 1-year return flow was selected as a conservative threshold for flash flood event identification to ensure a sufficient number of training instances. Comparative benchmarking with the National Water Model (NWM v3.0) revealed that the RNN-based approaches offer notable enhancements in capturing the intensity and timing of flood events, particularly for short-duration and high-magnitude floods (flash floods). Comparison of predicted disharges with the discharge recorded at the gauges revealed that GRU had the best performance as it achieved the highest mean NSE values and exhibited low variability across diverse watersheds. LSTM results were slightly less consistent compared to the GRU albeit achieving satisfactory performance, proving its value in hydrological forecasting. In contrast, VRNN had the highest variability and the lowest NSE values among the three. The NWM model trailed the machine learning-based models. The study highlights the efficacy of the RNN models in advancing hydrological predictions. 
610 4 |a US Geological Survey 
651 4 |a United States--US 
653 |a Gauges 
653 |a Datasets 
653 |a Watersheds 
653 |a Feature selection 
653 |a Machine learning 
653 |a Long short-term memory 
653 |a Pearson distributions 
653 |a Return flow 
653 |a Variability 
653 |a Precipitation 
653 |a Flood forecasting 
653 |a Regions 
653 |a Recurrent neural networks 
653 |a Artificial intelligence 
653 |a Information processing 
653 |a Fluid dynamics 
653 |a Frequency analysis 
653 |a Stream flow 
653 |a Flood predictions 
653 |a Flash floods 
653 |a Discharge 
653 |a Accuracy 
653 |a Data processing 
653 |a Deep learning 
653 |a Models 
653 |a Forecasting 
653 |a Floods 
653 |a Data assimilation 
653 |a Data analysis 
653 |a Flash flooding 
653 |a Hydrology 
653 |a Learning algorithms 
653 |a Adaptability 
653 |a Predictions 
653 |a Neural networks 
653 |a Complexity 
653 |a Discharge frequency 
653 |a Physical simulation 
700 1 |a Samadi Vidya  |u Department of Agricultural Sciences, Clemson University, Clemson, SC 29634, USA; samadi@clemson.edu 
700 1 |a Khan, Abdul A  |u The Glenn Department of Civil Engineering, Clemson University, Clemson, SC 29634, USA; eheidar@clemson.edu 
773 0 |t Hydrology  |g vol. 12, no. 4 (2025), p. 90 
786 0 |d ProQuest  |t Agriculture Science Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194612621/abstract/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194612621/fulltextwithgraphics/embedded/75I98GEZK8WCJMPQ?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194612621/fulltextPDF/embedded/75I98GEZK8WCJMPQ?source=fedsrch