Industrial-Grade CNN-Based System for the Discrimination of Music Versus Non-Music in Radio Broadcast Audio

Guardado en:
Detalles Bibliográficos
Publicado en:Information vol. 16, no. 4 (2025), p. 288
Autor principal: Cesarini Valerio
Otros Autores: Addati Vincenzo, Costantini Giovanni
Publicado:
MDPI AG
Materias:
Acceso en línea:Citation/Abstract
Full Text + Graphics
Full Text - PDF
Etiquetas: Agregar Etiqueta
Sin Etiquetas, Sea el primero en etiquetar este registro!

MARC

LEADER 00000nab a2200000uu 4500
001 3194615421
003 UK-CbPIL
022 |a 2078-2489 
024 7 |a 10.3390/info16040288  |2 doi 
035 |a 3194615421 
045 2 |b d20250101  |b d20251231 
084 |a 231474  |2 nlm 
100 1 |a Cesarini Valerio 
245 1 |a Industrial-Grade CNN-Based System for the Discrimination of Music Versus Non-Music in Radio Broadcast Audio 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a This paper addresses the issue of distinguishing commercially played songs from non-music audio in radio broadcasts, where automatic song identification systems are commonly employed for reporting purposes. Service call costs increase because these systems need to remain continuously active, even when music is not being broadcast. Our solution serves as a preliminary filter to determine whether an audio segment constitutes “music” and thus warrants a subsequent service call to an identifier. We collected 139 h of non-consecutive 5 s audio samples from various radio broadcasts, labeling segments from talk shows or advertisements as “non-music”. We implemented multiple data augmentation strategies, including FM-like pre-processing, trained a custom Convolutional Neural Network, and then built a live inference platform capable of continuously monitoring web radio streams. This platform was validated using 1360 newly collected audio samples, evaluating performance on both 5 s chunks and 15 s buffers. The system demonstrated consistently high performance on previously unseen stations, achieving an average accuracy of 96% and a maximum of 98.23%. The intensive pre-processing contributed to these performances with the benefit of making the system inherently suitable for FM radio. This solution has been incorporated into a commercial product currently utilized by Italian clients for royalty calculation and reporting purposes. 
651 4 |a United States--US 
653 |a Data augmentation 
653 |a Music 
653 |a Datasets 
653 |a Performance evaluation 
653 |a Automation 
653 |a Radio broadcasting 
653 |a Segments 
653 |a Artificial neural networks 
653 |a Neural networks 
700 1 |a Addati Vincenzo 
700 1 |a Costantini Giovanni 
773 0 |t Information  |g vol. 16, no. 4 (2025), p. 288 
786 0 |d ProQuest  |t Advanced Technologies & Aerospace Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194615421/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194615421/fulltextwithgraphics/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194615421/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch