Research on the Hydroelasto-Plasticity Method and Its Application in Collapse Analyses of Ship Structures

שמור ב:
מידע ביבליוגרפי
הוצא לאור ב:Journal of Marine Science and Engineering vol. 13, no. 4 (2025), p. 706
מחבר ראשי: Yuan Qingning
מחברים אחרים: Pei Zhiyong, Zhu, Ye
יצא לאור:
MDPI AG
נושאים:
גישה מקוונת:Citation/Abstract
Full Text + Graphics
Full Text - PDF
תגים: הוספת תג
אין תגיות, היה/י הראשונ/ה לתייג את הרשומה!

MARC

LEADER 00000nab a2200000uu 4500
001 3194618839
003 UK-CbPIL
022 |a 2077-1312 
024 7 |a 10.3390/jmse13040706  |2 doi 
035 |a 3194618839 
045 2 |b d20250101  |b d20251231 
084 |a 231479  |2 nlm 
100 1 |a Yuan Qingning  |u School of Naval Architecture, Ocean and Energy Power Engineering, Wuhan University of Technology, Wuhan 430063, China; 226189@whut.edu.cn 
245 1 |a Research on the Hydroelasto-Plasticity Method and Its Application in Collapse Analyses of Ship Structures 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a The prevailing trend in marine engineering towards large-scale ship design inherently reduces structural rigidity, amplifying fluid–structure interaction effects during extreme wave loading scenarios. Conventional ultimate strength assessment frameworks fail to account for such dynamic coupling mechanisms. To address this critical limitation, this study proposes a novel hydroelasto-plastic coupling framework and establishes time-dependent coupling equations governing fluid–structure interactions through systematic integration of the hydrodynamic principle and structural dynamics principle. Through a co-simulation approach combining computational fluid dynamics and finite element methods, the pressure and displacement boundary conditions at the fluid–structure interface are iteratively exchanged; thus, the time-domain solution of the coupling equations is obtained. A simplified box-type structure is analyzed to investigate its hydroelasto-plastic behavior and the mechanism of fluid–structure interaction. This research facilitates the elucidation of progressive collapse characteristics in ship hull structures under hydrodynamic loads, demonstrating significant implications for structural safety design. 
653 |a Finite element method 
653 |a Time dependence 
653 |a Structural engineering 
653 |a Hydrodynamics 
653 |a Boundary conditions 
653 |a Structural safety 
653 |a Fluid dynamics 
653 |a Naval engineering 
653 |a Extreme waves 
653 |a Safety engineering 
653 |a Marine engineering 
653 |a Coupling 
653 |a Simulation 
653 |a Ultimate tensile strength 
653 |a Plasticity 
653 |a Fluid-structure interaction 
653 |a Ship design 
653 |a Ship hulls 
653 |a Computational fluid dynamics 
653 |a Catastrophic collapse 
653 |a Rigidity 
653 |a Structural dynamics 
653 |a Shipbuilding 
653 |a Environmental 
700 1 |a Pei Zhiyong  |u Green & Smart River-Sea-Going Ship, Cruise and Yacht Research Center, Wuhan University of Technology, Wuhan 430063, China 
700 1 |a Zhu, Ye  |u China Classification Society Wuhan Branch, Wuhan 430063, China; yzhu@ccs.org.cn 
773 0 |t Journal of Marine Science and Engineering  |g vol. 13, no. 4 (2025), p. 706 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194618839/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text + Graphics  |u https://www.proquest.com/docview/3194618839/fulltextwithgraphics/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194618839/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch