New Applications of Elliptic Functions and Integrals in GPS Inter-Satellite Communications with Account of General Relativity Theory

Guardado en:
Bibliografiske detaljer
Udgivet i:Mathematics vol. 13, no. 8 (2025), p. 1286
Hovedforfatter: Dimitrov Bogdan
Udgivet:
MDPI AG
Fag:
Online adgang:Citation/Abstract
Full Text
Full Text - PDF
Tags: Tilføj Tag
Ingen Tags, Vær først til at tagge denne postø!

MARC

LEADER 00000nab a2200000uu 4500
001 3194622688
003 UK-CbPIL
022 |a 2227-7390 
024 7 |a 10.3390/math13081286  |2 doi 
035 |a 3194622688 
045 2 |b d20250101  |b d20251231 
084 |a 231533  |2 nlm 
100 1 |a Dimitrov Bogdan  |u Institute of Nuclear Research and Nuclear Energetics, Bulgarian Academy of Sciences, 72 Tzarigradsko Shaussee, 1784 Sofia, Bulgaria; dimitrov.bogdan.bogdan@gmail.com or bogdan.dimitrov@iaps.institute; Tel.: +359-88-555-1758 
245 1 |a New Applications of Elliptic Functions and Integrals in GPS Inter-Satellite Communications with Account of General Relativity Theory 
260 |b MDPI AG  |c 2025 
513 |a Journal Article 
520 3 |a During the last 15–20 years, the experimental methods for autonomous navigation and inter-satellite links have been developing rapidly in order to ensure navigation control and data processing without commands from Earth stations. Inter-satellite links are related to relative ranging between the satellites from one constellation or different constellations and measuring the distances between them with the precision of at least 1 <inline-formula>μ</inline-formula>m micrometer (=<inline-formula>10−6</inline-formula> m), which should account for the bending of the light (radio or laser) signals due to the action of the Earth’s gravitational field. Thus, the theoretical calculation of the propagation time of a signal should be described in the framework of general relativity theory and the s.c. null cone equation. This review paper summarizes the latest achievements in calculating the propagation time of a signal, emitted by a GPS satellite, moving along a plane elliptical orbit or a space-oriented orbit, described by the full set of six Kepler parameters. It has been proved that for the case of plane elliptical orbit, the propagation time is expressed by a sum of elliptic integrals of the first, the second and the third kind, while for the second case (assuming that only the true anomaly angle is the dynamical parameter), the propagation time is expressed by a sum of elliptic integrals of the second and of the fourth order. For both cases, it has been proved that the propagation time represents a real-valued expression and not an imaginary one, as it should be. For the typical parameters of a GPS orbit, numerical calculations for the first case give acceptable values of the propagation time and, especially, the Shapiro delay term of the order of nanoseconds, thus confirming that this is a propagation time for the signal and not for the time of motion of the satellite. Theoretical arguments, related to general relativity and differential geometry have also been presented in favor of this conclusion. A new analytical method has been developed for transforming an elliptic integral in the Legendre form into an integral in the Weierstrass form. Two different representations have been found, one of them based on the method of four-dimensional uniformization, exposed in the monograph of Whittaker and Watson. The result of this approach is a new formulae for the Weierstrass invariants, depending in a complicated manner on the modulus parameter q of the elliptic integral in the Legendre form. 
653 |a Propagation 
653 |a Global positioning systems--GPS 
653 |a Data processing 
653 |a Earth stations 
653 |a Mathematical analysis 
653 |a Satellite communications 
653 |a Intersatellite communications 
653 |a Satellite navigation systems 
653 |a Relativity 
653 |a Differential geometry 
653 |a Lasers 
653 |a Orbits 
653 |a Orbit calculation 
653 |a Gravitational fields 
653 |a Elliptic functions 
653 |a Autonomous navigation 
653 |a Elliptical orbits 
653 |a Navigation systems 
653 |a Theory of relativity 
653 |a Satellite constellations 
653 |a Parameters 
653 |a Ground stations 
653 |a Radio signals 
773 0 |t Mathematics  |g vol. 13, no. 8 (2025), p. 1286 
786 0 |d ProQuest  |t Engineering Database 
856 4 1 |3 Citation/Abstract  |u https://www.proquest.com/docview/3194622688/abstract/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text  |u https://www.proquest.com/docview/3194622688/fulltext/embedded/L8HZQI7Z43R0LA5T?source=fedsrch 
856 4 0 |3 Full Text - PDF  |u https://www.proquest.com/docview/3194622688/fulltextPDF/embedded/L8HZQI7Z43R0LA5T?source=fedsrch