Multiple Solutions for Double-Phase Elliptic Problem with NonLocal Interaction
Guardado en:
| Publicado en: | Mathematics vol. 13, no. 8 (2025), p. 1281 |
|---|---|
| Autor principal: | |
| Otros Autores: | |
| Publicado: |
MDPI AG
|
| Materias: | |
| Acceso en línea: | Citation/Abstract Full Text Full Text - PDF |
| Etiquetas: |
Sin Etiquetas, Sea el primero en etiquetar este registro!
|
MARC
| LEADER | 00000nab a2200000uu 4500 | ||
|---|---|---|---|
| 001 | 3194622698 | ||
| 003 | UK-CbPIL | ||
| 022 | |a 2227-7390 | ||
| 024 | 7 | |a 10.3390/math13081281 |2 doi | |
| 035 | |a 3194622698 | ||
| 045 | 2 | |b d20250101 |b d20251231 | |
| 084 | |a 231533 |2 nlm | ||
| 100 | 1 | |a Kefi Khaled |u Center for Scientific Research and Entrepreneurship, Northern Border University, Arar 73213, Saudi Arabia | |
| 245 | 1 | |a Multiple Solutions for Double-Phase Elliptic Problem with NonLocal Interaction | |
| 260 | |b MDPI AG |c 2025 | ||
| 513 | |a Journal Article | ||
| 520 | 3 | |a This study explores the existence and multiplicity of weak solutions for a double-phase elliptic problem with nonlocal interactions, formulated as a Dirichlet boundary value problem. The associated differential operator exhibits two distinct phases governed by exponents p and q, which satisfy a prescribed structural condition. By employing critical point theory, we establish the existence of at least one weak solution and, under appropriate assumptions, demonstrate the existence of three distinct solutions. The analysis is based on abstract variational methods, with a particular focus on the critical point theorems of Bonanno and Bonanno–Marano. | |
| 653 | |a Phase transitions | ||
| 653 | |a Differential equations | ||
| 653 | |a Operators (mathematics) | ||
| 653 | |a Critical point | ||
| 653 | |a Dirichlet problem | ||
| 653 | |a Variational methods | ||
| 653 | |a Boundary value problems | ||
| 700 | 1 | |a Al-Shomrani, Mohammed M |u Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia | |
| 773 | 0 | |t Mathematics |g vol. 13, no. 8 (2025), p. 1281 | |
| 786 | 0 | |d ProQuest |t Engineering Database | |
| 856 | 4 | 1 | |3 Citation/Abstract |u https://www.proquest.com/docview/3194622698/abstract/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text |u https://www.proquest.com/docview/3194622698/fulltext/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |
| 856 | 4 | 0 | |3 Full Text - PDF |u https://www.proquest.com/docview/3194622698/fulltextPDF/embedded/7BTGNMKEMPT1V9Z2?source=fedsrch |